En 2011, el proyecto de la Encuesta Modelo sobre la Discapacidad (MDS, por sus siglas en inglés) fue iniciado por la OMS y el Banco Mundial (BM) en 2011.
El MDS se basa en la Clasificación Internacional de Funcionamiento, Discapacidad y Salud (ICF, por sus siglas en inglés) y representa una evolución en el concepto de medición de la discapacidad. Explora la discapacidad como la experiencia de una persona con una condición de salud o discapacidad que se encuentra en un entorno facilitador u obstaculizador, en lugar de centrarse únicamente en el estado de salud de la persona.
En consonancia con el marco conceptual de la ICF, la MDS adopta el enfoque de que:
Por lo tanto, la razón detrás de la MDS requiere una muestra de población general y el uso de no filtros, es decir, no una selección a priori de los encuestados, con tres objetivos principales:
La MDS adopta el enfoque de que la discapacidad es un fenómeno universal caracterizado por un continuo que varía de niveles de discapacidad bajos a altos. Esta conceptualización requiere que la información sobre la discapacidad se informe y analice utilizando escalas métricas. Esta escala va desde 0 (sin discapacidad) a 100 (discapacidad extrema).
Siguiendo un enfoque similar al del Informe Mundial sobre Discapacidad (WRD, por sus siglas en inglés) y utilizando la moderna teoría de pruebas, las preguntas de funcionamiento del Módulo 4000 se utilizan para construir una escala de discapacidad con propiedades métricas. La muestra de la población general se utiliza para crear esta métrica, que luego se transforma linealmente para ir desde 0 (nivel más bajo de discapacidad) hasta 100 (nivel más alto).
El Programa de Discapacidad de la OMS ofrece apoyo técnico a los países para guiar la implementación exitosa de la encuesta y analizar los datos resultantes. Esta guía forma parte de este paquete de apoyo técnico.
Para crear la escala de discapacidad, en la que cada individuo tiene
una puntuación de 0 a 100, la OMS utiliza una técnica llamada Análisis
de Rasch. El propósito de esta guía es explicar en detalle cómo se
realiza el Análisis de Rasch y cómo utilizar el paquete de códigos de la
OMS, escrito en el lenguaje de programación estadística R
,
para llevar a cabo el Análisis de Rasch para el MDS.
A primera vista, la medición parece muy directa. Sin embargo, el concepto de “medición” en realidad se compone de unos pocos componentes más pequeños. Es importante entender cada uno de estos componentes al formular una nueva herramienta de medición, como lo estamos haciendo con la Encuesta Modelo sobre Discapacidad.
Las principales ideas de medición son las siguientes:
Por ejemplo, una persona (objeto) tiene cierta inteligencia con respecto a las matemáticas (propiedad). La inteligencia matemática de esta persona se puede observar a través de su desempeño en una prueba de matemáticas (manifestación). Su desempeño en el examen de matemáticas recibe una puntuación de 0 a 100 (escala). El puntaje que alguien recibe en un día en particular puede estar influenciado por factores aleatorios como su estado de ánimo o las condiciones de la habitación, por lo que el puntaje puede no reflejar exactamente la verdadera inteligencia de la persona (error).
Así como hay diferentes tipos de propiedades que los objetos pueden tener (por ejemplo: altura, peso, color, inteligencia), también hay diferentes tipos de escalas con las que se pueden medir estas propiedades. Cada uno de estos diferentes tipos de escalas puede proporcionarle diferentes tipos de información, y solo puede realizar ciertos tipos de operaciones matemáticas con cada tipo de escala.
Los cuatro tipos principales de escalas son:
La siguiente tabla ofrece un resumen de qué tipo de información es posible con cada escala.
La mayoría de las preguntas de la MDS están en una escala ordinal de 5 puntos (por ejemplo, 1 = Ninguna, 2 = Algunas, 3 = Moderada, 4 = Mucho, 5 = Completa). Para crear un puntaje que podamos usar y confiar, lo que queremos hacer es tomar nuestros datos ordinales y mapearlos en una escala de intervalos de discapacidad. En otras palabras, al usar la regla de abajo como referencia, queremos pasar de la parte superior de la regla a la parte inferior.
¿Por qué simplemente agregar datos ordinales no es lo suficientemente bueno? Imagine que es el CEO de una empresa que vende jugo de naranja. Le pregunta a sus empleados, ¿cuánto jugo de naranja podremos producir este trimestre? El Empleado A responde que la compañía ha producido 5000 naranjas mientras que el Empleado B responde que la compañía ha producido 1500kg de naranjas. ¿Quién le dio más información sobre la cantidad de jugo de naranja que podrá producir?
El Empleado B le dio información sobre una escala de intervalo (peso), y el Empleado A le dio información sobre una escala ordinal (conteo). El Empleado B le dio más información; Con su respuesta, usted sabe exactamente cuánto jugo de naranja puede vender. El Empleado A le dijo cuántas naranjas tiene, pero no tiene idea de cuán grandes o pequeñas son.
Este escenario es similar a nuestro cuestionario. Podríamos simplemente sumar todas las respuestas a todas las preguntas que nos interesan para calcular una puntuación total. Sin embargo, esa puntuación total no nos dice mucho sobre el nivel general de discapacidad que una persona experimenta, porque no sabemos qué preguntas se identificaron como difíciles y las diferentes preguntas tienen diferentes niveles de dificultad.
Por ejemplo, imagine que una persona está respondiendo preguntas de la Encuesta Modelo sobre la Discapacidad. Esta persona respondió “3 = Algunos problemas” a las dos preguntas: “¿Qué tan problemático ha sido para usted utilizar el servicio sanitario?” y “¿Qué tan problemático ha sido para usted dormir?”. Uno puede imaginar que las dificultades para dormir son bastante comunes, y muchos de nosotros experimentamos problemas con el sueño sin que esto afecte nuestras vidas demasiado. Sin embargo, muchas menos personas tienen “algunos problemas” con el uso del inodoro, y uno puede imaginar que tener incluso un cierto nivel de dificultad para usar el inodoro puede causar problemas significativos en la vida de alguien. Por lo tanto, se puede ver que la respuesta de “3” a “dormir” no es equivalente a la respuesta de “3” a “utilizar el servicio sanitario”.
Así que, en esencia, estamos tratando de pasar de contar las respuestas a las preguntas sobre discapacidad a medir realmente los niveles de discapacidad en una escala de intervalo. Lo haremos usando Análisis Rasch.
Antes de comenzar la discusión de la técnica del Análisis de Rasch, es importante enfatizar nuevamente la comprensión de la OMS sobre la discapacidad. Estamos midiendo la discapacidad en una escala de intervalo. Esta escala varía de 0 (sin discapacidad) a 100 (discapacidad extrema), y cada persona de la población se encuentra en algún lugar de la escala.
Esto es muy diferente de la forma tradicional de pensar sobre la discapacidad. A menudo, cuando las personas escuchan la palabra “discapacidad”, piensan en diferentes “tipos de discapacidades”, y las personas que más rápidamente vienen a la mente son, por ejemplo, las personas ciegas, las personas sordas o las que usan sillas de ruedas. Para la OMS, la palabra “discapacidad” no se refiere a los atributos de grupos específicos y limitados de personas que tienen discapacidades particulares. Para la OMS, “discapacidad” se refiere a una experiencia universal, no un atributo de una persona, que es el resultado de una multitud de factores, como una condición de salud subyacente o la accesibilidad de un entorno.
Por ejemplo, piense en una persona que tiene un impedimento de la vista debido a un glaucoma y otra persona que tiene un impedimento de movilidad debido a una lesión de la médula espinal. Ambas personas pueden tener dificultades para usar el sistema de transporte. La persona con una discapacidad visual puede tener dificultades para usar el transporte porque los nombres de las paradas en el autobús no se anuncian por el altavoz, por lo que la persona no puede saber cuándo ha llegado a su destino. La persona con problemas de movilidad puede tener dificultades para usar el sistema de transporte porque los autobuses no tienen rampas que le permitan bajar independientemente con su silla de ruedas. A pesar del hecho de que estas dos personas tienen diferentes tipos de impedimentos y se enfrentan con diferentes tipos de barreras, el nivel de discapacidad que experimentan es bastante similar en este dominio particular del transporte.
La salida del Análisis Rasch nos dará el puntaje de discapacidad para cada persona en la muestra. Luego podemos trazar estos puntajes en un histograma para obtener una imagen general de la distribución de la discapacidad en una población. A continuación se muestra un ejemplo de dicha distribución. Puedes pensar en el eje horizontal como una regla. Cada persona se sienta en algún lugar de esta regla, y las alturas de los barrotes indican cuántas personas se encuentran en esa posición particular en la regla.
La razón principal por la que usamos Rasch Analysis ya se ha mencionado: nos permite tomar datos ordinales y mapearlos en una escala de intervalo. Sin embargo, hay otras propiedades importantes del Modelo Rasch que lo convierten en un método particularmente útil para nuestros propósitos:
En última instancia, tenemos tres objetivos principales al realizar el Análisis Rasch:
En otras palabras, la Meta 1 nos da los puntajes de discapacidad que estamos buscando. La Meta 2 nos dice qué “difíciles” los ítems son, es decir, qué tan indicativos son los diferentes niveles de discapacidad (leve, moderada, grave).
La Meta 3 tiene que ver con las propiedades psicométricas del instrumento de encuesta que estamos utilizando. Con el Análisis Rasch, además de calcular la escala de intervalo, estamos realizando simultáneamente un análisis de la validez y confiabilidad de la escala. Si nuestros datos se ajustan a la propiedad del modelo, podemos estar seguros de que los puntajes que obtenemos para las personas y para los artículos son válidos (es decir, están midiendo lo que pretendemos medir) y confiables (es decir, el instrumento de la encuesta daría resultados consistentes si la encuesta fue repetida).
Como ya se mencionó anteriormente, uno de nuestros objetivos es obtener las estimaciones de las capacidades de las personas. Esto significa que una salida del Análisis de Rasch será un continuo de rasgo latente (se muestra a continuación) …
… donde puede localizar personas específicas …
…y también los ítems!
“Continuo del rasgo latente” es otra frase para describir la escala. “Rasgo latente” se refiere a una característica subyacente de la población que el instrumento de la encuesta está midiendo (en nuestro caso, discapacidad). “Continuo” es simplemente otra palabra para “escala”, enfatizando que las personas pueden ubicarse en cualquier punto entre los puntos finales (0 y 100) de la escala.
La figura anterior ilustra un ejemplo que analiza la fuerza de las personas y la dificultad de cada elemento (preguntas Q1 a Q10) en relación con la fuerza. La persona más fuerte está en el lado izquierdo del continuo, mientras que la persona más débil está en el lado derecho del continuo. Podemos ver que los artículos Q9 y Q10 son los más fáciles; están ubicados en el mismo extremo del continuo que la persona más débil. La probabilidad de que las personas más fuertes en el extremo izquierdo del continuo obtengan las preguntas “correctas” es muy alta. Las preguntas Q1 y Q2 son las más difíciles; solo las personas más fuertes, ubicadas en el mismo extremo del continuo, tienen una probabilidad razonable de que estas preguntas sean “correctas”.
El Análisis de Rasch fue nombrado por el matemático danés Georg Rasch (1901-1980). La idea fundamental del Análisis de Rasch fue resumida por Rasch de la siguiente manera:
… una persona que tenga una capacidad mayor que otra persona debería tener la mayor probabilidad de resolver cualquier elemento del tipo en cuestión y, de manera similar, un elemento es más difícil que otro significa que para cualquier persona la probabilidad de resolver el segundo elemento es el mayor.
Esta cita de Rasch se refiere a dos situaciones:
Rasch es uno de los modelos más simples en Teoría de la respuesta del artículo (IRT, por sus siglas en inglés). IRT es un enfoque de medición probabilístico: la probabilidad de una respuesta “correcta” a un elemento (es decir, una pregunta) es una función (es decir, una relación) de los parámetros (es decir, las características) de la persona y el elemento.
Bajo el Modelo de Rasch, la probabilidad de cierta respuesta a un elemento de medición está asociada con la capacidad del encuestado (\(\beta_n\)) y la dificultad del ítem (\(\delta_i\)). Usando nuestro ejemplo anterior de una prueba de matemáticas, la capacidad de la persona \(\beta_n\) sería la inteligencia matemática de la persona, y la dificultad del ítem \(\delta_i\) sería la dificultad de cualquier pregunta dada en la prueba.
Hay dos versiones diferentes del modelo: la versión dicotómica (todas las preguntas tienen dos opciones de respuesta, por ejemplo 0 y 1) y la versión politómica (las preguntas tienen más de 2 opciones de respuesta). El modelo politómico, en el que estamos más interesados porque en el MDS la mayoría de las preguntas utiliza una escala de 5 puntos que va desde “1 = sin problemas” a “5 = problemas extremos”, es simplemente una extensión de la versión dicotómica. A continuación damos una descripción básica de los modelos.
A continuación se muestra la principal ecuación para el Modelo de Rasch dicotómico (dos opciones de respuesta):
\[P(X_{ni}=1) = \frac{e^{\beta_n-\delta_i}}{1+e^{\beta_n-\delta_i}}\]
en la que:
En palabras más simples, esto significa: la probabilidad de que esa persona \(n\) responde a la pregunta \(i\) correctamente es una proporción basada en la diferencia entre la capacidad de esa persona (\(\beta_n\)) y la dificultad de esa artículo (\(\delta_i\)).
Esto se puede ver en la siguiente figura. El eje vertical es la probabilidad de que la persona responda a una pregunta correctamente (\(P(X_{ni}=1)\)), con un rango de 0 a 1. El eje horizontal es la diferencia entre la capacidad de una persona y la dificultad del ítem (\(\beta_n-\delta_i\)). Digamos que esta pregunta tiene dos opciones: 0 y 1, y una respuesta “correcta” al elemento es la opción de respuesta de 1. Cuando la capacidad de la persona y la dificultad del elemento son iguales (\(\beta_n-\ delta_i=0\) o \(\beta_n=\delta_i\)), entonces la probabilidad de que la persona responda correctamente a la pregunta es del 50%. Si la capacidad de la persona es mayor que la dificultad del elemento (\(\beta_n>\delta_i\)), entonces la probabilidad de que la persona responda correctamente a la pregunta es superior al 50%. Si la capacidad de la persona es menor que la dificultad del ítem (\(\beta_n<\delta_i\)), entonces la probabilidad de que la persona responda correctamente a la pregunta es menor al 50%.
El modelo de Rasch politómico (más de 2 opciones de respuesta) es una extensión de la versión dicotómica. También es conocido como el Modelo de crédito parcial. La principal ecuación para este modelo es:
\[P(X_{ni}=x) = \frac{e^{\sum^x_{k=0}(\beta_n-\tau_{ki})}}{\sum^{m_i}_{j=0}e^{\sum^j_{k=0}(\beta_n-\tau_{ki})}}\] en la que:
En palabras más simples, la probabilidad de que esa persona \(n\) dé la respuesta \(x\) a la pregunta \(i\) es una proporción basada en la diferencia entre la capacidad de esa persona (\(\beta_n\)) y la dificultad de cada opción de respuesta (\(\tau_{ki}\)) para ese ítem.
Esto se puede ver en la siguiente figura, que es similar a la figura para el modelo dicotómico. El eje vertical es la probabilidad condicional de que la persona logre elegir una opción de respuesta particular o superior (\(P(X_{ni}>x)\)), que va de 0 a 1. El eje horizontal es la diferencia entre la capacidad de una persona y la dificultad del ítem. La diferencia clave entre esta figura y la figura para el modelo dicotómico es que ahora tenemos una curva de probabilidad para cada umbral.
Un umbral es el punto entre dos opciones de respuesta adyacentes donde una persona tiene un 50% de probabilidad de dar una opción de respuesta u otra. La siguiente figura muestra el caso de cuatro opciones de respuesta, lo que significa que esta pregunta tiene tres umbrales (el 50% del punto entre las opciones de respuesta 1 y 2, el mismo punto entre las opciones 2 y 3, y el mismo punto entre las opciones 3 y 4).
En la siguiente figura, puede ver que la probabilidad de pasar el primer umbral (curva roja), es decir, obtener una puntuación de 2, es siempre mayor que la probabilidad de pasar el segundo (verde) o el tercer (azul) umbral. Esto muestra una propiedad clave del Modelo de Rasch politómico: los umbrales están ordenados.
Todo lo que hemos descrito hasta ahora es un trasfondo de la lógica del Análisis de Rasch. Sin embargo, en este punto aún no hemos descrito cómo se lo hace realmente.
En general, la técnica básica es ajustar nuestros datos al Modelo Rasch, tomando nota de lo bien que se ajusta a las suposiciones del Modelo Rasch. Esto difiere de otros tipos de modelado en los que se adapta un modelo a sus datos. El modelo de Rasch se ve como el “ideal”, y queremos ajustar nuestros datos de manera que puedan ajustarse a este ideal. Si nuestros datos se ajustan razonablemente a este ideal, podemos estar seguros de que tenemos una escala de intervalo válida y confiable.
El análisis de Rasch es un proceso iterativo, lo que significa que debe realizarse varias veces para alcanzar un resultado. El proceso se muestra en la siguiente figura.
La siguiente pregunta, naturalmente, es: ¿cuáles son los suposiciones de Rasch que estamos probando?
Los suposiciones del Modelo Rasch son los siguientes. Cada suposición será discutido en detalle en las siguientes secciones:
También analizaremos a continuación cómo ajustar los datos para que se ajusten mejor a cada supuesto. Es posible que estas técnicas no tengan mucho sentido ahora, pero se aclararán una vez que analicemos el ejemplo.
Independencia de los ítems se refiere a la incorrelación entre los ítems. En otras palabras, queremos que las respuestas a un ítem NO se relacionen fuertemente con las respuestas de otro ítem. La correlación ocurre cuando los ítems están vinculados por atributos, contenido, estructuras o temas comunes. Por ejemplo, en el MDS dos ítems que a menudo están relacionados son “¿Qué tan problemático ha sido para usted sentir tristeza, desánimo o depresión?” y “¿Qué tan problemático ha sido para usted sentir preocupación, nerviosismo o ansiedad?”
Para solucionar problemas con alta correlación, a menudo agregamos ítems dependientes en un “súper ítem” o “testlet”. Por ejemplo, si tenemos dos ítems, cada uno con 5 opciones de respuesta, que están altamente correlacionados, podríamos combinarlos en un testlet sumando las respuestas para cada persona. Este testlet ahora tendría 9 opciones de respuesta.
La unidimensionalidad se refiere a la situación en la que todos los ítems miden la misma construcción única subyacente. En el caso de la MDS, queremos que todos los ítems midan la misma construcción subyacente de “discapacidad”. Una puntuación total solo es significativa con una escala unidimensional.
Toma otro ejemplo en la situación educativo: imagine una prueba de matemáticas. Todos los ítems de esta prueba miden la misma construcción subyacente, es decir, la capacidad de la persona en matemáticas. Si una prueba de matemáticas también contuviera preguntas de literatura en inglés, la escala creada con todos los ítems de esta prueba ya no sería unidimensional porque la prueba se compone de dos conjuntos de ítems totalmente separados.
Si notamos problemas con la dimensionalidad de nuestros datos, podemos corregirlo dividiendo los ítems en múltiples escalas. En nuestro ejemplo educativo anterior, esto significaría crear una escala separada para las preguntas de matemáticas en la prueba y una escala separada para las preguntas de inglés.
El ordenamiento estocástico se refiere a los umbrales (es decir, los límites entre las opciones de respuesta) que están en el orden correcto. Esperamos que la probabilidad de que una persona cruce el primer umbral sea mayor que la probabilidad de que pase el segundo, y de igual manera la probabilidad de cruzar el segundo umbral debe ser mayor que la probabilidad de cruzar el tercero, etc. Como analogía, piense en un salto de altura: si alguien puede saltar más de 1.5 m, entonces necesariamente ya saltó más de 1 m. El ordenamiento estocástico solo es relevante para los artículos con más de 2 opciones de respuesta (caso politómico).