Package 'AgroR'

June 15, 2022

Type Package

Title Experimental Statistics and Graphics for Agricultural Sciences

Version 1.3.0

Date 2022-06-13

Maintainer Gabriel Danilo Shimizu <shimizu@uel.br>

Description Performs the analysis of completely randomized experimental designs (CRD), randomized blocks (RBD) and Latin square (LSD), experiments in double and triple factorial scheme (in CRD and RBD), experiments in subdivided plot scheme (in CRD and RBD), subdivided and joint analysis of experiments in CRD and RBD, linear regression analysis, test for two samples. The package performs analysis of variance, ANOVA assumptions and multiple comparison test of means or regression, according to Pimentel-Gomes (2009, ISBN: 978-85-7133-055-9), nonparametric test (Conover, 1999, ISBN: 0471160687), test for two samples, joint analysis of experiments according to Ferreira (2018, ISBN: 978-85-7269-566-4) and generalized linear model (glm) for binomial and Poisson family in CRD and RBD (Carvalho, FJ (2019), <doi:10.14393/ufu.te.2019.1244>). It can also be used to obtain descriptive measures and graphics, in addition to correlations and creative graphics used in agricultural sciences (Agronomy, Zootechnics, Food Science and related areas).

Encoding UTF-8

RoxygenNote 7.2.0

Imports ggplot2, nortest, lme4, crayon, lmtest, emmeans, multcomp, ggrepel, MASS, cowplot, multcompView, RColorBrewer, drc, dunn.test, gtools

Suggests DT, knitr, rmarkdown, roxygen2

Depends R (>= 3.6.0)

License GPL (>= 2)

URL https://agronomiar.github.io/AgroR_package/index.html,

https://agrorproject.shinyapps.io/agror_shiny/

NeedsCompilation no

Author Gabriel Danilo Shimizu [aut, cre]
(https://orcid.org/0000-0001-8524-508X>>https://orcid.org/0000-0003-2778-8654>https://orcid.org/0000-0003-2778-8654>https://orcid.org/0000-0001-9700-9375>https://orcid.org

Repository CRAN

Date/Publication 2022-06-15 06:40:05 UTC

R topics documented:

aacp
aristolochia
barfacet
bargraph_onefactor
bargraph_twofactor
barplot_positive
bar_dunnett
bar_graph
bar_graph2
bean
cloro
confinterval
conjdbc
conjdic
corgraph
corn
cor_ic
covercrops
DBC
DBC.glm
DBCT
desc
desc2fat
desc3fat
DIC
DIC.glm
DICT
dispvar
DQL
DQLT
dunn
dunnett
emerg
enxofre
FAT2DBC
FAT2DBC.ad

FAT2DIC	60
FAT2DIC.ad	63
FAT3DBC	67
FAT3DBC.ad	71
FAT3DIC	75
FAT3DIC.ad	78
ibarplot.double	
laranja	
line_plot	
logistic	
mirtilo	
orchard	
passiflora	
PCA_function	
pepper	
phao	
plot_cor	
plot_interaction	
<u> </u>	
plot_jitter	
plot_TH	
<u> </u>	
polynomial	
polynomial2	
polynomial2_color	
pomegranate	
porco	
PSUBDBC	
PSUBDIC	
PSUBFAT2DBC	
PSUBSUBDBC	
radargraph	
seg_graph	
seg_graph2	
sensorial	
simulate1	
simulate2	
simulate3	
sketch	
sk_graph	
soybean	
spider_graph	
STRIPLOT	
summarise_anova	
summarise_dunnett	
tabledesc	
TBARPLOT.reverse	
test_two	
tomate	133

4 aacp

transf .	•	•	•		•	•				•			•	•	•	•	•		•	•	•	•		•		13	34
weather																										13	35

Index 137

ааср

Utils: Area under the curve

Description

Performs the calculation of the area under the progress curve. Initially created for the plant disease area, whose name is "area under the disease progress curve", it can be adapted to various areas of agrarian science.

Usage

aacp(data)

Arguments

data

Data.frame containing evaluations in columns. Column names must be numeric and not dates or characters

Value

Returns a vector with the area values under the curve

Note

Just enter the data. Exclude treatment columns. See example.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

References

Campbell, C. L., and Madden, L. V. (1990). Introduction to plant disease epidemiology. John Wiley and Sons.

See Also

transf, sketch

aristolochia 5

Examples

```
# Using the simulate1 dataset
data("simulate1")
# Converting to readable format for function
dados=cbind(simulate1[simulate1$tempo==1,3],
           simulate1[simulate1$tempo==2,3],
           simulate1[simulate1$tempo==3,3],
           simulate1[simulate1$tempo==4,3],
           simulate1[simulate1$tempo==5,3],
           simulate1[simulate1$tempo==6,3])
colnames(dados)=c(1,2,3,4,5,6)
dados
# Creating the treatment vector
resp=aacp(dados)
trat=simulate1$trat[simulate1$tempo==1]
# Analyzing by DIC function
DIC(trat,resp)
```

aristolochia

Dataset: Germination of seeds of Aristolochia sp. as a function of temperature.

Description

The data come from an experiment conducted at the Seed Analysis Laboratory of the Agricultural Sciences Center of the State University of Londrina, in which five temperatures (15, 20, 25, 30 and 35C) were evaluated in the germination of *Aristolochia elegans*. The experiment was conducted in a completely randomized design with four replications of 25 seeds each.

Usage

```
data("aristolochia")
```

Format

data.frame containing data set
trat numeric vector with factor 1
resp Numeric vector with response

See Also

cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

6 barfacet

Examples

```
data(aristolochia)
```

barfacet

Graph: Bar graph for one factor with facets

Description

This is a function of the bar graph for one factor with facets

Usage

```
barfacet(
  model,
  facet = NULL,
  theme = theme_bw(),
  geom = "bar",
  fill = "lightblue",
  pointsize = 4.5,
  width.bar = 0.15
)
```

Arguments

```
model DIC, DBC or DQL object

facet vector with facets

theme ggplot2 theme

geom graph type (columns or segments)

fill fill bars

pointsize Point size

width.bar width of the error bars of a regression graph.
```

Value

Returns a bar chart for one factor

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

bargraph_onefactor 7

Examples

```
library(AgroR)
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,
    ylab = "Number of fruits/plants"))
barfacet(a,c("S1","S1","S1","S1","S1",
    "S2","S2","S3","S3"))
```

bargraph_onefactor

Graph: Group DIC, DBC and DQL functions column charts

Description

Groups two or more column charts exported from DIC, DBC or DQL function

Usage

```
bargraph_onefactor(
   analysis,
   labels = NULL,
   ocult.facet = FALSE,
   ocult.box = FALSE,
   facet.size = 14,
   ylab = NULL,
   width.bar = 0.3,
   sup = NULL
)
```

Arguments

```
List with DIC, DBC or DQL object
analysis
labels
                  Vector with the name of the facets
ocult.facet
                 Hide facets
ocult.box
                 Hide box
facet.size
                 Font size facets
                 Y-axis name
ylab
width.bar
                 Width bar
                 Number of units above the standard deviation or average bar on the graph
sup
```

Value

Returns a column chart grouped by facets

8 bargraph_twofactor

Examples

```
library(AgroR)
data("laranja")
a=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
b=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
c=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
bargraph_onefactor(analysis = list(a,b,c), labels = c("One", "Two", "Three"),ocult.box = TRUE)
```

bargraph_twofactor

Graph: Group FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC functions column charts

Description

Groups two or more column charts exported from FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC function

Usage

```
bargraph_twofactor(
   analysis,
   labels = NULL,
   ocult.facet = FALSE,
   ocult.box = FALSE,
   facet.size = 14,
   ylab = NULL,
   width.bar = 0.3,
   sup = NULL
)
```

Arguments

analysis List with DIC, DBC or DQL object
labels Vector with the name of the facets
ocult.facet Hide facets
ocult.box Hide box
facet.size Font size facets
ylab Y-axis name
width.bar Width bar

sup Number of units above the standard deviation or average bar on the graph

Value

Returns a column chart grouped by facets

barplot_positive 9

Examples

```
library(AgroR)
data(corn)
a=with(corn, FAT2DIC(A, B, Resp, quali=c(TRUE, TRUE),ylab="Heigth (cm)"))
b=with(corn, FAT2DIC(A, B, Resp, mcomp="sk", quali=c(TRUE, TRUE),ylab="Heigth (cm)"))
bargraph_twofactor(analysis = list(a,b), labels = c("One","Two"),ocult.box = TRUE)
```

barplot_positive

Graph: Positive barplot

Description

Column chart with two variables that assume a positive response and represented by opposite sides, such as dry mass of the area and dry mass of the root

Usage

```
barplot_positive(
   a,
   b,
   ylab = "Response",
   var_name = c("Var1", "Var2"),
   legend.title = "Variable",
   fill_color = c("darkgreen", "brown")
)
```

Arguments

a Object of DIC, DBC or DQL functions
b Object of DIC, DBC or DQL functions
ylab Y axis names
var_name Name of the variable

legend.title Legend title fill_color Bar fill color

Value

The function returns a column chart with two positive sides

Note

When there is only an effect of the isolated factor in the case of factorial or subdivided plots, it is possible to use the barplot_positive function.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

bar_dunnett

See Also

```
radargraph, sk_graph, plot_TH, corgraph, spider_graph, line_plot
```

Examples

```
data("passiflora")
attach(passiflora)
a=with(passiflora, DBC(trat, bloco, MSPA))
b=with(passiflora, DBC(trat, bloco, MSR))
barplot_positive(a, b, var_name = c("DMAP","DRM"), ylab = "Dry root (g)")
```

bar_dunnett

Graph: Barplot for Dunnett test

Description

The function performs the construction of a column chart of Dunnett's test.

Usage

```
bar_dunnett(
  output.dunnett,
  ylab = "Response",
  xlab = "",
  fill = c("#F8766D", "#00BFC4"),
  sup = NA,
  add.mean = TRUE,
  round = 2
)
```

Arguments

output.dunnett	Numerical or complex vector with treatments
ylab	Variable response name (Accepts the expression() function)
xlab	Treatments name (Accepts the expression() function)
fill	Fill column. Use vector with two elements c(control, different treatment)
sup	Number of units above the standard deviation or average bar on the graph
add.mean	Plot the average value on the graph (<i>default</i> is TRUE)
round	Number of cells

Value

Returns a column chart of Dunnett's test. The colors indicate difference from the control.

bar_graph 11

Examples

```
# randomized block design in factorial double
library(AgroR)
data(cloro)
attach(cloro)
respAd=c(268, 322, 275, 350, 320)
a=FAT2DBC.ad(f1, f2, bloco, resp, respAd,
          ylab="Number of nodules",
          legend = "Stages",mcomp="sk")
data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp),
         data.frame(trat=c("Test","Test","Test","Test","Test"),
                  bloco=unique(bloco),resp=respAd))
a= with(data,dunnett(trat = trat,
              resp = resp,
               control = "Test",
               block=bloco,model = "DBC"))
bar_dunnett(a)
```

bar_graph

Graph: Bar graph for one factor

Description

This is a function of the bar graph for one factor

Usage

```
bar_graph(model, fill = "lightblue", horiz = TRUE)
```

Arguments

model	DIC, DBC or DQL object
-------	------------------------

fill fill bars

horiz Horizontal Column (default is TRUE)

Value

Returns a bar chart for one factor

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
```

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

bar_graph2

See Also

radargraph, barplot_positive, plot_TH, plot_TH1, corgraph, spider_graph, line_plot, plot_cor, plot_interaction, plot_jitter, seg_graph, TBARPLOT.reverse

Examples

```
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,
    ylab = "Number of fruits/plants"))
bar_graph(a,horiz = FALSE)
```

bar_graph2

Graph: Bar graph for one factor model 2

Description

This is a function of the bar graph for one factor

Usage

```
bar_graph2(
  model,
  point.color = "black",
  point.size = 2,
  point.shape = 16,
  text.color = "black",
  label.color = "black",
  bar.color = "black",
  title.size = 14,
  y.text = 0,
  add.info = NA,
  y.info = 0,
  color.info = "black",
  fill = "lightblue"
)
```

Arguments

```
model DIC, DBC or DQL object
point.color Point color
point.size Point size
point.shape Format point
text.color Text color
label.color Label color
```

bean 13

bar.color Errorbar color title.size Title size

y.text Y-axis height for x-axis legend

add.info Add other information

y. info Y-axis height for other information

color.info Color text information

fill Fill bars

Value

Returns a bar chart for one factor

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

radargraph, barplot_positive, plot_TH, plot_TH1, corgraph, spider_graph, line_plot, plot_cor, plot_interaction, plot_jitter, seg_graph, TBARPLOT.reverse

Examples

bean Dataset: Bean

Description

An experiment to evaluate the effect of different strains of Azospirillum on common bean cultivar IPR Sabia was carried out in a greenhouse. A completely randomized design with five strains was used. of Azospirillum (treatments) and five repetitions. The response variable analyzed was grain production per plant (g plant-1).

Usage

```
data("bean")
```

14 cloro

Format

```
data.frame containing data set

trat numeric vector with treatment

prod Numeric vector with grain production per plant
```

See Also

aristolochia, cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(bean)

cloro

Dataset: Sodium dichloroisocyanurate in soybean

Description

An experiment was conducted in a greenhouse in pots at the State University of Londrina. The work has the objective of evaluating the application of sodium dichloroisocyanurate (DUP) in soybean in 4 periods of application in soybean inoculated or not with Rhizobium and its influence on the number of nodules. The experiment was conducted in a completely randomized design with five replications.

Usage

data(cloro)

Format

data.frame containing data set

f1 Categorical vector with factor 1

f2 Categorical vector with factor 2

bloco Categorical vector with block

resp Numeric vector with number nodules

References

Rony Kauling Tonelli. Efeito do uso de dicloroisocianurato de sodio sobre a nodulacao em raizes de soja. 2016. Trabalho de Conclusao de Curso. (Graduacao em Agronomia) - Universidade Estadual de Londrina.

confinterval 15

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(cloro)
```

confinterval

Utils: Interval of confidence for groups

Description

Calculates confidence interval for groups

Usage

```
confinterval(resp, group, alpha = 0.95, type = "upper")
```

Arguments

resp numeric vector with responses

group vector with groups or list with two factors

alpha confidence level of the interval

type lower or upper range

Value

returns a numeric vector with confidence interval grouped by treatment.

Examples

16 conjdbc

conjdbc

Analysis: Joint analysis of experiments in randomized block design

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized qualitative or quantitative single-block design with balanced data.

Usage

```
conjdbc(
  trat,
 block,
 local,
 response,
  transf = 1,
 norm = "sw",
 homog = "bt",
  theme = theme_classic(),
 mcomp = "tukey",
 quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = NA,
 ylab = "response",
 title = "",
xlab = "",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
 dec = 3,
  family = "sans",
  errorbar = TRUE
)
```

Arguments

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
local	Numeric or complex vector with locations or times
response	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
theme	ggplot2 theme (<i>default</i> is theme classic())

conjdbc 17

mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
grau	Degree of polynomial in case of quantitative factor (default is 1)
ylab	Variable response name (Accepts the expression() function)
title	Graph title
xlab	Treatments name (Accepts the expression() function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angulo	x-axis scale text rotation
textsize	Font size
dec	Number of cells
family	Font family
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix, the analysis of variance, the multiple comparison test or regression.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

18 conjdic

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

```
library(AgroR)
data(mirtilo)
with(mirtilo, conjdbc(trat, bloco, exp, resp))
```

conjdic

Analysis: Joint analysis of experiments in completely randomized design

Description

Function of the AgroR package for joint analysis of experiments conducted in a completely randomized design with a qualitative or quantitative factor with balanced data.

Usage

```
conjdic(
  trat,
  repet,
  local,
  response,
  transf = 1,
  norm = "sw",
  homog = "bt",
 mcomp = "tukey",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = NA,
  theme = theme_classic(),
  ylab = "response",
  title = "",
  xlab = "",
  color = "rainbow",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
  dec = 3,
  family = "sans",
  errorbar = TRUE
)
```

conjdic 19

Numerical or complex vector with treatments

Arguments

trat

repet Numerical or complex vector with repetitions Numeric or complex vector with locations or times local Numerical vector containing the response of the experiment. response transf Applies data transformation (default is 1; for log consider 0) Error normality test (*default* is Shapiro-Wilk) norm Homogeneity test of variances (default is Bartlett) homog Multiple comparison test (Tukey (*default*), LSD, Scott-Knott and Duncan) mcomp quali Defines whether the factor is quantitative or qualitative (*default* is qualitative) alpha.f Level of significance of the F test (*default* is 0.05) alpha.t Significance level of the multiple comparison test (*default* is 0.05) Degree of polynomial in case of quantitative factor (default is 1) grau ggplot2 theme (default is theme_classic()) theme ylab Variable response name (Accepts the *expression*() function) title Graph title

xlab Treatments name (Accepts the *expression*() function)

color When the columns are different colors (Set fill-in argument as "trat")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angulo x-axis scale text rotation

textsize Font size

dec Number of cells family Font family

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix, the analysis of variance, the multiple comparison test or regression.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

20 corgraph

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

```
library(AgroR)
data(mirtilo)
with(mirtilo, conjdic(trat, bloco, exp, resp))
```

corgraph

Graph: Correlogram

Description

Correlation analysis function (Pearson or Spearman)

Usage

```
corgraph(
  data,
  axissize = 12,
  legendsize = 12,
  legendposition = c(0.9, 0.2),
  legendtitle = "Correlation",
  method = "pearson"
)
```

corn 21

Arguments

data data.frame with responses

axissize Axes font size (default is 12)

legendsize Legend font size (default is 12)

legendposition Legend position (default is c(0.9,0.2))

legendtitle Legend title (default is "Correlation")

method Method correlation (default is Pearson)

Value

The function returns a correlation matrix

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
corgraph(pomegranate[,-1])
```

corn Dataset: Corn

Description

A 3 x 2 factorial experiment was carried out to compare three new corn hybrids considering the change in sowing density, being 55 thousand or 65 thousand seeds per hectare. For this case, the researcher is not interested in estimating values for other densities, but only in verifying if one density differs from the other. The experiment was carried out according to a completely randomized design with 4 repetitions of each treatment.

Usage

data(corn)

Format

data.frame containing data set

- A Categorical vector with hybrids
- B Categorical vector with density

resp Numeric vector with response

cor_ic

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(corn)
```

cor_ic

Graph: Plot Pearson correlation with interval of confidence

Description

Plot Pearson correlation with interval of confidence

Usage

```
cor_ic(
  data,
  background = TRUE,
  axis.size = 12,
  ylab = "",
  xlab = "Correlation (r)",
  theme = theme_classic()
)
```

Arguments

data	data.frame with responses
background	background fill (default is TRUE)
axis.size	Axes font size (default is 12)
ylab	Variable response name (Accepts the expression() function)
xlab	Treatments name (Accepts the expression() function)
theme	ggplot theme (<i>default</i> is theme classic())

Value

The function returns a new graphical approach to correlation.

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

covercrops 23

Examples

```
data("pomegranate")
cor_ic(pomegranate[,-1])
```

covercrops

Dataset: Covercrops

Description

Consider a 3×3 factorial experiment in randomized blocks, with 4 replications, on the influence of three new soybean cultivars (A1, A2 and A3) and the use of three types of green manure (B1, B2 and B3) on yield in 100 m2 plots.

Usage

```
data(covercrops)
```

Format

data.frame containing data set

- A Categorical vector with cultivars
- B Categorical vector with green manure

Bloco Categorical vector with block

Resp Numeric vector with yield

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(covercrops)
```

DBC DBC

Analysis: Randomized block design

Description

DBC

This is a function of the AgroR package for statistical analysis of experiments conducted in a randomized block and balanced design with a factor considering the fixed model. The function presents the option to use non-parametric method or transform the dataset.

Usage

```
DBC(
  trat,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = TRUE,
 mcomp = "tukey",
  grau = 1,
  transf = 1,
  constant = 0,
  test = "parametric",
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  CV = TRUE,
  ylab = "response",
  xlab = "",
  textsize = 12,
  labelsize = 4,
  fill = "lightblue",
  angle = 0,
  family = "sans",
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
 point = "mean_sd",
  angle.label = 0
)
```

Arguments

trat

Numerical or complex vector with treatments

DBC 25

block Numerical or complex vector with blocks

response Numerical vector containing the response of the experiment.

norm Error normality test (default is Shapiro-Wilk)
homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (*default* is qualitative)
mcomp Multiple comparison test (Tukey (*default*), LSD, Scott-Knott and Duncan)

grau Degree of polynomial in case of quantitative factor (*default* is 1)

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

test "parametric" - Parametric test or "noparametric" - non-parametric test

geom graph type (columns, boxes or segments)
theme ggplot2 theme (default is theme_classic())

Number of units above the standard deviation or average bar on the graph

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

ylab Variable response name (Accepts the *expression*() function)
xlab Treatments name (Accepts the *expression*() function)

textsize Font size labelsize Label size

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

family Font family dec Number of cells

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

posi Legend position

point Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd"

- default) or mean with standard error (default - "mean_se").

angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Friedman test. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

26 DBC

Note

Enable ggplot2 package to change theme argument.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

DIC, DQL

Examples

DBC.glm 27

DBC.glm

Analysis: Randomized block design by glm

Description

Statistical analysis of experiments conducted in a randomized block design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.

Usage

```
DBC.glm(
  trat,
  block,
  response,
  glm.family = "binomial",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  labelsize = 5,
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
 point = "mean_sd",
  angle.label = 0
)
```

28 DBC.glm

Arguments

trat Numerical or complex vector with treatments block Numerical or complex vector with blocks

response Numerical vector containing the response of the experiment. Use cbind(resp,

n-resp) for binomial or quasibinomial family.

glm. family distribution family considered (*default* is binomial)

quali Defines whether the factor is quantitative or qualitative (*default* is qualitative)

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05)

geom Graph type (columns, boxes or segments) theme ggplot2 theme (default is theme_classic())

sup Number of units above the standard deviation or average bar on the graph

ylab Variable response name (Accepts the *expression*() function) xlab Treatments name (Accepts the *expression*() function)

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

family Font family
textsize Font size
labelsize Label size
dec Number of cells

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

posi Legend position

point Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd"

- default) or mean with standard error (default - "mean_se").

angle.label label angle

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("aristolochia")
attach(aristolochia)
# Assuming the same aristolochia data set, but considering randomized blocks
bloco=rep(paste("B",1:16),5)
resp=resp/2
DBC.glm(trat,bloco, cbind(resp,50-resp), glm.family="binomial")
```

DBCT 29

DBCT

Analysis: Randomized block design evaluated over time

Description

Function of the AgroR package for analysis of experiments conducted in a balanced qualitative, single-factorial randomized block design with multiple assessments over time, however without considering time as a factor.

Usage

```
DBCT(
  trat,
  block,
  time,
  response,
  alpha.f = 0.05,
  alpha.t = 0.05,
 mcomp = "tukey",
  geom = "bar",
  theme = theme_classic(),
  fill = "gray",
  ylab = "Response",
  xlab = "Independent",
  textsize = 12,
  labelsize = 5,
  pointsize = 4.5,
  error = TRUE,
  family = "sans",
  sup = 0,
  addmean = FALSE,
  posi = c(0.1, 0.8),
  legend = "Legend",
  ylim = NA,
  width.bar = 0.2,
  size.bar = 0.8,
  dec = 3,
  xnumeric = FALSE,
  all.letters = FALSE
)
```

Arguments

trat Numerical or complex vector with treatments
block Numerical or complex vector with blocks
time Numerical or complex vector with times

30 DBCT

response Numerical vector containing the response of the experiment.

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05)

mcomp Multiple comparison test (Tukey (default), LSD ("lsd"), Scott-Knott ("sk"), Dun-

can ("duncan") and Friedman ("fd"))

geom Graph type (columns - "bar" or segments "point")

theme ggplot2 theme (*default* is theme_classic())

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

textsize Font size of the texts and titles of the axes

labelsize Font size of the labels

pointsize Point size

error Add error bar (SD)

family Font family

sup Number of units above the standard deviation or average bar on the graph

addmean Plot the average value on the graph (*default* is TRUE)

posi Legend position
legend Legend title
ylim y-axis scale
width.bar width error bar
size.bar size error bar
dec Number of cells

xnumeric Declare x as numeric (*default* is FALSE)

all.letters Adds all label letters regardless of whether it is significant or not.

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

desc 31

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Gonçalves Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

```
DBC, DICT, DQLT
```

Examples

desc

Descriptive: Descriptive analysis

Description

Performs the descriptive analysis of an experiment with a factor of interest.

Usage

```
desc(trat, response, ylab = "Response", xlab = "Treatment", ylim = NA)
```

32 desc2fat

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment.
ylab	Variable response name (Accepts the expression() function)
xlab	x name (Accepts the expression() function)
ylim	y-axis scale

Value

The function returns exploratory measures of position and dispersion, such as mean, median, maximum, minimum, coefficient of variation, etc ...

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
desc2fat, tabledesc,dispvar
```

Examples

```
library(AgroR)
data("pomegranate")
with(pomegranate, desc(trat,WL))
```

desc2fat

Descriptive: Descriptive analysis (Two factors)

Description

It performs the descriptive analysis of an experiment with two factors of interest.

Usage

```
desc2fat(f1, f2, response, ylab = "Response", theme = theme_classic())
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels

response Numerical vector containing the response of the experiment. ylab Variable response name (Accepts the *expression*() function)

theme ggplot2 theme (default is theme_classic())

desc3fat 33

Value

The function returns exploratory measures of position and dispersion, such as mean, median, maximum, minimum, coefficient of variation, etc ...

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

Examples

```
library(AgroR)
data(cloro)
with(cloro, desc2fat(f1,f2,resp))
```

desc3fat

Descriptive: Descriptive analysis (Three factors)

Description

Performs the descriptive graphical analysis of an experiment with three factors of interest.

Usage

```
desc3fat(
  f1,
  f2,
  f3,
  response,
  legend.title = "Legend",
  xlab = "",
  ylab = "Response",
  theme = theme_classic(),
  plot = "interaction"
)
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
response	Numerical vector containing the response of the experiment.
legend.title	Legend title
xlab	x name (Accepts the expression() function)

34 DIC

ylab	Variable response name (Accepts the <i>expression</i> () function)
theme	ggplot theme
plot	"interaction" or "box"

Value

The function returns a triple interaction graph.

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, desc3fat(f1, f2, f3, resp))
```

DIC

Analysis: Completely randomized design

Description

Statistical analysis of experiments conducted in a completely randomized and balanced design with a factor considering the fixed model. The function presents the option to use non-parametric method or transform the dataset.

Usage

```
DIC(
  trat,
  response,
  norm = "sw"
 homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = TRUE,
 mcomp = "tukey",
  grau = 1,
  transf = 1,
  constant = 0,
  test = "parametric",
 mcompNP = "LSD",
  p.adj = "holm",
  geom = "bar",
```

DIC 35

```
theme = theme_classic(),
 ylab = "Response",
 sup = NA,
 CV = TRUE,
 xlab = "",
 fill = "lightblue",
 angle = 0,
 family = "sans",
  textsize = 12,
 labelsize = 4,
 dec = 3,
 addmean = TRUE,
 errorbar = TRUE,
 posi = "top",
 point = "mean_sd",
 angle.label = 0
)
```

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (default is qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Degree of polynomial in case of quantitative factor (default is 1)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0, 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
test	"parametric" - Parametric test or "noparametric" - non-parametric test
mcompNP	Multiple comparison test (LSD (default) or dunn)
p.adj	Method for adjusting p values for Kruskal-Wallis ("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
geom	Graph type (columns, boxes or segments)
theme	ggplot2 theme (default is theme_classic())
ylab	Variable response name (Accepts the expression() function)
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
xlab	Treatments name (Accepts the expression() function)

36 DIC

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

family Font family textsize Font size Label size

dec Number of cells

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

posi Legend position

point Defines whether to plot mean ("mean"), mean with standard deviation ("mean sd"

- default) or mean with standard error (default - "mean_se"). For quali=FALSE

or quali=TRUE.

angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Kruskal-Wallis test. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

Enable ggplot2 package to change theme argument.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

Post hoc test in nonparametric is using the criterium Fisher's least significant difference (p-adj="holm").

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

DIC 37

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

W.J. Conover, Practical Nonparametrics Statistics. 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Hothorn, T. et al. Package 'lmtest'. Testing linear regression models. https://cran. r-project.org/web/packages/lmtest/lmtest.pdf. Accessed, v. 6, 2015.

See Also

DBC DQL

Examples

```
library(AgroR)
data(pomegranate)
with(pomegranate, DIC(trat, WL, ylab = "Weight loss (%)")) # tukey
with(pomegranate, DIC(trat, WL, mcomp = "sk", ylab = "Weight loss (%)"))
with(pomegranate, DIC(trat, WL, mcomp = "duncan", ylab = "Weight loss (%)"))
# Kruskal-Wallis
with(pomegranate, DIC(trat, WL, test = "noparametric", ylab = "Weight loss (%)"))
# chart type
with(pomegranate, DIC(trat, WL, geom="point", ylab = "Weight loss (%)"))
with(pomegranate, DIC(trat, WL, ylab = "Weight loss (%)", xlab="Treatments"))
# quantitative factor
data("phao")
with(phao, DIC(dose,comp,quali=FALSE,grau=2,
            xlab = expression("Dose"~(g~vase^-1)),
           ylab="Leaf length (cm)"))
# data transformation
```

38 DIC.glm

DIC.glm

Analysis: Completely randomized design by glm

Description

Statistical analysis of experiments conducted in a completely randomized design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.

Usage

```
DIC.glm(
  trat,
  response,
  glm.family = "binomial",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  labelsize = 5,
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
  point = "mean_sd",
  angle.label = 0
)
```

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment. Use cbind(resp, n-resp) for binomial or quasibinomial family.
glm.family	distribution family considered (default is binomial)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)

DIC.glm 39

alpha.f Level of significance of the F test (*default* is 0.05) Significance level of the multiple comparison test (*default* is 0.05) alpha.t Graph type (columns, boxes or segments) geom theme ggplot2 theme (default is theme_classic()) sup Number of units above the standard deviation or average bar on the graph ylab Variable response name (Accepts the expression() function) Treatments name (Accepts the *expression*() function) xlab fill Defines chart color (to generate different colors for different treatments, define fill = "trat"x-axis scale text rotation angle family Font family textsize Font size labelsize Label size dec Number of cells addmean Plot the average value on the graph (default is TRUE) errorbar Plot the standard deviation bar on the graph (In the case of a segment and column graph) - default is TRUE Legend position posi Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" point - default) or mean with standard error (default - "mean_se").

Author(s)

angle.label

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

label angle

Examples

40 DICT

```
resp=resp/4 # total germinated seeds

# the value 25 is the total of seeds in the repetition
DIC.glm(trat, cbind(resp,25-resp), glm.family="binomial")
```

DICT

Analysis: Completely randomized design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a completely randomized, qualitative, uniform qualitative design with multiple assessments over time, however without considering time as a factor.

Usage

```
DICT(
  trat,
  time,
  response,
  alpha.f = 0.05,
  alpha.t = 0.05,
  mcomp = "tukey",
  theme = theme_classic(),
  geom = "bar",
  xlab = "Independent",
  ylab = "Response",
  p.adj = "holm",
  dec = 3,
  fill = "gray",
  error = TRUE,
  textsize = 12,
  labelsize = 5,
  pointsize = 4.5,
  family = "sans",
  sup = 0,
  addmean = FALSE,
  legend = "Legend",
  ylim = NA,
  width.bar = 0.2,
  size.bar = 0.8,
  posi = c(0.1, 0.8),
  xnumeric = FALSE,
  all.letters = FALSE
)
```

DICT 41

Arguments

trat	Numerical or complex vector with treatments
time	Numerical or complex vector with times
response	Numerical vector containing the response of the experiment.
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
mcomp	$\label{eq:multiple} Multiple comparison test (Tukey (\textit{default}), LSD ("lsd"), Scott-Knott ("sk"), Duncan ("duncan") and Kruskal-Wallis ("kw"))$
theme	ggplot2 theme (default is theme_classic())
geom	Graph type (columns - "bar" or segments "point")
xlab	treatments name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)
p.adj	Method for adjusting p values for Kruskal-Wallis ("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
dec	Number of cells
fill	Defines chart color (to generate different colors for different treatments, define $fill = "trat"$)
error	Add error bar
textsize	Font size of the texts and titles of the axes
labelsize	Font size of the labels
pointsize	Point size
family	Font family
sup	Number of units above the standard deviation or average bar on the graph
addmean	Plot the average value on the graph (default is TRUE)
legend	Legend title
ylim	y-axis scale
width.bar	width error bar
size.bar	size error bar
posi	Legend position
xnumeric	Declare x as numeric (<i>default</i> is FALSE)
all.letters	Adds all label letters regardless of whether it is significant or not.

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

42 dispvar

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

```
DIC, DBCT, DQLT
```

Examples

```
rm(list=ls())
data(simulate1)
attach(simulate1)
with(simulate1, DICT(trat, tempo, resp))
with(simulate1, DICT(trat, tempo, resp,geom="bar",sup=40))
with(simulate1, DICT(trat, tempo, resp,geom="point",sup=40,))
```

dispvar

Descriptive: Boxplot with standardized data

Description

It makes a graph with the variables and/or treatments with the standardized data.

Usage

```
dispvar(
  data,
  trat = NULL,
  theme = theme_bw(),
  ylab = "Standard mean",
  xlab = "Variable",
  family = "serif",
```

DQL 43

```
textsize = 12,
fill = "lightblue"
)
```

Arguments

data data.frame containing the response of the experiment.

trat Numerical or complex vector with treatments

theme ggplot2 theme (default is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

family Font family textsize Font size

fill Defines chart color

Value

Returns a chart of boxes with standardized data

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi

Examples

```
library(AgroR)
data("pomegranate")
dispvar(pomegranate[,-1])
trat=pomegranate$trat
dispvar(pomegranate[,-1], trat)
```

DQL Analysis: Latin square design

Description

This is a function of the AgroR package for statistical analysis of experiments conducted in Latin Square and balanced design with a factor considering the fixed model.

DQL DQL

Usage

```
DQL(
  trat,
  line,
  column,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = TRUE,
 mcomp = "tukey",
  grau = 1,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
 CV = TRUE,
 ylab = "Response",
  xlab = "",
  textsize = 12,
  labelsize = 4,
  fill = "lightblue",
  angle = 0,
  family = "sans",
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
 posi = "top",
 point = "mean_sd",
  angle.label = 0
)
```

Arguments

trat	Numerical or complex vector with treatments
line	Numerical or complex vector with lines
column	Numerical or complex vector with columns
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)

DQL 45

grau Degree of polynomial in case of quantitative factor (*default* is 1)

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

geom Graph type (columns, boxes or segments)
theme ggplot2 theme (default is theme_classic())

Number of units above the standard deviation or average bar on the graph

Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

ylab Variable response name (Accepts the *expression*() function)
xlab Treatments name (Accepts the *expression*() function)

textsize Font size
labelsize Label size

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

family Font family dec Number of cells

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

posi Legend position

point Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd"

- *default*) or mean with standard error (*default* - "mean_se").

angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

DQLT

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

```
DIC, DBC
```

Examples

```
library(AgroR)
data(porco)
with(porco, DQL(trat, linhas, colunas, resp, ylab="Weigth (kg)"))
```

DQLT

Analysis: Latin square design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a balanced qualitative single-square Latin design with multiple assessments over time, however without considering time as a factor.

Usage

```
DQLT(
   trat,
   line,
   column,
   time,
   response,
   alpha.f = 0.05,
```

DQLT 47

```
alpha.t = 0.05,
 mcomp = "tukey",
 error = TRUE,
 xlab = "Independent",
 ylab = "Response",
 textsize = 12,
 labelsize = 5,
 pointsize = 4.5,
  family = "sans",
  sup = 0,
  addmean = FALSE,
 posi = c(0.1, 0.8),
 geom = "bar",
  fill = "gray",
 legend = "Legend",
 ylim = NA,
 width.bar = 0.2,
 size.bar = 0.8,
 dec = 3,
  theme = theme_classic(),
 xnumeric = FALSE,
 all.letters = FALSE
)
```

Arguments

trat	Numerical or complex vector with treatments
line	Numerical or complex vector with line
column	Numerical or complex vector with column
time	Numerical or complex vector with times
response	Numerical vector containing the response of the experiment.
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
error	Add error bar (SD)
xlab	Treatments name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)
textsize	Font size of the texts and titles of the axes
labelsize	Font size of the labels
pointsize	Point size
family	Font family
sup	Number of units above the standard deviation or average bar on the graph
addmean	Plot the average value on the graph (default is TRUE)
posi	Legend position

48 DQLT

geom Graph type (columns - "bar" or segments "point")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

legend Legend title
ylim y-axis scale
width.bar width error bar
size.bar size error bar
dec Number of cells

theme ggplot2 theme (default is theme_classic())
xnumeric Declare x as numeric (default is FALSE)

all.letters Adds all label letters regardless of whether it is significant or not.

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

dunn 49

See Also

```
DQL, DICT, DBCT
```

Examples

```
rm(list=ls())
data(simulate3)
attach(simulate3)
DQLT(trat, linhas, colunas, tempo, resp)
```

dunn

Analysis: Post-hoc Dunn

Description

Perform Kruskal wallis and dunn post-hoc test

Usage

```
dunn(trat, resp, method = "holm", alpha = 0.05, decreasing = TRUE)
```

Arguments

trat Numerical or complex vector with treatments

resp Vector with response

method the p-value for multiple comparisons ("none", "bonferroni", "sidak", "holm",

"hs", "hochberg", "bh", "by"). The default is no adjustment for multiple com-

parisons

alpha Significance level of the post-hoc (*default* is 0.05)

decreasing Should the order of the letters be increasing or decreasing.

Value

Kruskal-wallis and dunn's post-hoc test returns

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Examples

```
library(AgroR)
data(pomegranate)
with(pomegranate, dunn(trat, WL))
```

50 dunnett

dunnett

Analysis: Dunnett test

Description

The function performs the Dunnett test

Usage

```
dunnett(
  trat,
  resp,
  \verb|control|,\\
  model = "DIC",
  block = NA,
  column = NA,
  line = NA,
  alpha.t = 0.05,
  pointsize = 5,
  pointshape = 21,
  linesize = 1,
  labelsize = 4,
  textsize = 12,
  errorsize = 1,
  widthsize = 0.2,
  label = "Response",
  fontfamily = "sans"
```

Arguments

trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.
control	Treatment considered control (write identical to the name in the vector)
model	Experimental design (DIC, DBC or DQL)
block	Numerical or complex vector with blocks
column	Numerical or complex vector with columns
line	Numerical or complex vector with lines
alpha.t	Significance level (default is 0.05)
pointsize	Point size
pointshape	Shape
linesize	Line size
labelsize	Label size

emerg 51

textsize	Font size
errorsize	Errorbar size
widthsize	Width errorbar
label	Variable label
fontfamily	font family

Value

I return the Dunnett test for experiments in a completely randomized design, randomized blocks or Latin square.

Note

Do not use the "-" symbol or space in treatment names

Examples

```
# complete randomized design
data("pomegranate")
with(pomegranate,dunnett(trat=trat,resp=WL,control="T1"))
# randomized block design in factorial double
library(AgroR)
data(cloro)
attach(cloro)
respAd=c(268, 322, 275, 350, 320)
a=FAT2DBC.ad(f1, f2, bloco, resp, respAd,
         ylab="Number of nodules",
         legend = "Stages", mcomp="sk")
data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp),
       data.frame(trat=c("Test","Test","Test","Test"),
               bloco=unique(bloco),resp=respAd))
with(data,dunnett(trat = trat,
             resp = resp,
             control = "Test",
             block=bloco,model = "DBC"))
```

emerg

Dataset: Emergence of passion fruit seeds over time.

Description

The data come from an experiment conducted at the State University of Londrina, aiming to study the emergence of yellow passion fruit seeds over time. Data are partial from one of the treatments studied. Four replicates with eight seeds each were used.

52 enxofre

Usage

```
data("emerg")
```

Format

data.frame containing data set

time numeric vector with time

resp Numeric vector with emergence

See Also

aristolochia, cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(emerg)

enxofre

Dataset: Sulfur data

Description

The experiment was carried out in a randomized block design in a $3 \times 3 \times 3$ triple factorial scheme: syrup volume (75, 225 and 675 L), sulfur doses (150, 450, 1350) and time of application (vegetative, complete cycle and reproductive system) with four repetitions. Yield in kg / ha of soybean was evaluated.

Usage

```
data(enxofre)
```

Format

data.frame containing data set

- f1 Categorical vector with factor 1
- f2 Categorical vector with factor 2
- f2 Categorical vector with factor 3

bloco Categorical vector with block

resp Numeric vector

See Also

cloro, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

FAT2DBC 53

Examples

```
data(enxofre)
```

FAT2DBC

Analysis: DBC experiments in double factorial

Description

Analysis of an experiment conducted in a randomized block design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DBC(
  f1,
  f2,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
 ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2"),
  legend = "Legend",
  fill = "lightblue",
  angle = 0,
  textsize = 12,
  labelsize = 4,
  dec = 3,
  family = "sans",
  point = "mean_sd",
  addmean = TRUE,
  errorbar = TRUE,
  CV = TRUE,
  sup = NA,
```

54 FAT2DBC

```
color = "rainbow",
posi = "right",
ylim = NA,
angle.label = 0
)
```

Arguments

f1 Numeric or complex vector with factor 1 levels f2 Numeric or complex vector with factor 2 levels

block Numerical or complex vector with blocks

response Numerical vector containing the response of the experiment.

norm Error normality test (default is Shapiro-Wilk)
homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (*qualitative*)

mcomp Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)

grau Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with three elements.

grau12 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor

2 and quantitative factor 1.

grau21 Polynomial degree in case of quantitative factor (default is 1). Provide a vector

with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor

1 and quantitative factor 2.

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

geom Graph type (columns or segments (For simple effect only))

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab.factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

legend Legend title name

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

textsize font size

FAT2DBC 55

labelsize label size

dec number of cells

family font family

point if quali=FALSE, defines whether to plot all points ("all"), mean ("mean"), stan-

dard deviation ("mean_sd" - default) or mean with standard error (default -

"mean_se").

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

sup Number of units above the standard deviation or average bar on the graph

color Column chart color (default is "rainbow")

posi Legend position

ylim y-axis scale angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DBC.ad

Examples

```
# Example cloro
library(AgroR)
data(cloro)
attach(cloro)
FAT2DBC(f1, f2, bloco, resp, ylab="Number of nodules", legend = "Stages")
FAT2DBC(f1, f2, bloco, resp, mcomp="sk", ylab="Number of nodules", legend = "Stages")
# Example covercrops
library(AgroR)
data(covercrops)
attach(covercrops)
FAT2DBC(A, B, Bloco, Resp, ylab=expression("Yield"~(Kg~"100 m"^2)),
legend = "Cover crops")
FAT2DBC(A, B, Bloco, Resp, mcomp="sk", ylab=expression("Yield"~(Kg~"100 m"^2)),
legend = "Cover crops")
```

FAT2DBC.ad

Analysis: DBC experiment in double factorial design with an additional treatment

Description

Analysis of an experiment conducted in a randomized block design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DBC.ad(
  f1,
  f2,
  block,
  response,
  responseAd,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2"),
  legend = "Legend",
  ad.label = "Additional",
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  labelsize = 4,
  addmean = TRUE,
  errorbar = TRUE,
  CV = TRUE,
  dec = 3,
  angle = 0,
  posi = "right",
  family = "sans",
  point = "mean_sd",
  sup = NA,
 ylim = NA,
  angle.label = 0
)
```

Arguments

f1 Numeric or complex vector with factor 1 levels
f2 Numeric or complex vector with factor 2 levels
block Numeric or complex vector with repetitions

response Numerical vector containing the response of the experiment.

responseAd Numerical vector with additional treatment responses

norm Error normality test (default is Shapiro-Wilk)
homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05)
quali Defines whether the factor is quantitative or qualitative (*qualitative*)
mcomp Multiple comparison test (Tukey (*default*), LSD and Duncan)

grau Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with three elements.

grau12 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor

2 and quantitative factor 1.

grau21 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor

1 and quantitative factor 2.

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

geom Graph type (columns or segments (For simple effect only))

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab. factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

legend Legend title name ad.label Aditional label

color Column chart color (*default* is "rainbow")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

textsize Font size labelsize Label Size

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

dec Number of cells

angle x-axis scale text rotation

posi legend position

family Font family

point if quali=F, defines whether to plot all points ("all"), mean ("mean"), standard

deviation ("mean_sd") or mean with standard error (*default* - "mean_se").

sup Number of units above the standard deviation or average bar on the graph

ylim y-axis scale angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

The assumptions of variance analysis disregard additional treatment

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

60 FAT2DIC

See Also

FAT2DBC

dunnett

Examples

```
library(AgroR)
data(cloro)
respAd=c(268, 322, 275, 350, 320)
with(cloro, FAT2DBC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules", legend = "Stages"))
```

FAT2DIC

Analysis: DIC experiments in double factorial

Description

Analysis of an experiment conducted in a completely randomized design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DIC(
  f1,
  f2,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2"),
  legend = "Legend",
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  labelsize = 4,
  addmean = TRUE,
```

FAT2DIC 61

```
errorbar = TRUE,
CV = TRUE,
dec = 3,
angle = 0,
posi = "right",
family = "sans",
point = "mean_sd",
sup = NA,
ylim = NA,
angle.label = 0
```

Arguments

f1 Numeric or complex vector with factor 1 levels f2 Numeric or complex vector with factor 2 levels

response Numerical vector containing the response of the experiment.

norm Error normality test (default is Shapiro-Wilk)
homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05) quali Defines whether the factor is quantitative or qualitative (*qualitative*)

mcomp Multiple comparison test (Tukey (*default*), LSD, Scott-Knott and Duncan)

grau Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with three elements.

grau12 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor

2 and quantitative factor 1.

grau21 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor

1 and quantitative factor 2.

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

geom Graph type (columns or segments (For simple effect only))

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab. factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

legend Legend title name

color Column chart color (default is "rainbow")

62 FAT2DIC

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

textsize Font size labelsize Label Size

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

dec Number of cells

angle x-axis scale text rotation

posi Legend position family Font family

point if quali=F, defines whether to plot all points ("all"), mean ("mean"), standard

deviation ("mean_sd") or mean with standard error (default - "mean_se").

sup Number of units above the standard deviation or average bar on the graph

ylim y-axis scale angle.label Label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DIC.ad

Examples

FAT2DIC.ad

Analysis: DIC experiment in double factorial design with an additional treatment

Description

Analysis of an experiment conducted in a completely randomized design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DIC.ad(
  f1,
  f2,
  repe,
  response,
  responseAd,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2"),
  legend = "Legend",
  ad.label = "Additional",
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  labelsize = 4,
  addmean = TRUE,
  errorbar = TRUE,
  CV = TRUE,
  dec = 3,
  angle = 0,
  posi = "right",
  family = "sans",
  point = "mean_sd",
  sup = NA,
 ylim = NA,
  angle.label = 0
)
```

Arguments

f1 Numeric or complex vector with factor 1 levels
f2 Numeric or complex vector with factor 2 levels
repe Numeric or complex vector with repetitions

response Numerical vector containing the response of the experiment.

responseAd Numerical vector with additional treatment responses

norm Error normality test (default is Shapiro-Wilk)
homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (default is 0.05)
quali Defines whether the factor is quantitative or qualitative (qualitative)
mcomp Multiple comparison test (Tukey (default), LSD and Duncan)

grau Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with three elements.

grau12 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor

2 and quantitative factor 1.

grau21 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor

1 and quantitative factor 2.

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

geom Graph type (columns or segments (For simple effect only))

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab. factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

legend Legend title name ad.label Aditional label

color Column chart color (*default* is "rainbow")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

textsize Font size labelsize Label Size

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

dec Number of cells

angle x-axis scale text rotation

posi legend position

family Font family

point if quali=F, defines whether to plot all points ("all"), mean ("mean"), standard

deviation ("mean_sd") or mean with standard error (default - "mean_se").

sup Number of units above the standard deviation or average bar on the graph

ylim y-axis scale angle.label label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

The assumptions of variance analysis disregard additional treatment

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DIC

dunnett

Examples

```
library(AgroR)
data(cloro)
respAd=c(268, 322, 275, 350, 320)
with(cloro, FAT2DIC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules", legend = "Stages"))
```

FAT3DBC

Analysis: DBC experiments in triple factorial

Description

Analysis of an experiment conducted in a randomized block design in a triple factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT3DBC(
  f1,
  f2,
  f3,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE, TRUE),
 mcomp = "tukey",
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2", "F3"),
  sup = NA,
  grau = c(NA, NA, NA),
  grau12 = NA,
  grau13 = NA,
  grau23 = NA,
  grau21 = NA,
  grau31 = NA,
```

```
grau32 = NA,
grau123 = NA,
grau213 = NA,
grau312 = NA,
fill = "lightblue",
theme = theme_classic(),
angulo = 0,
errorbar = TRUE,
addmean = TRUE,
family = "sans",
dec = 3,
geom = "bar",
textsize = 12,
labelsize = 4,
angle.label = 0
```

Arguments

grau

with three elements.

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3.
ylab	Variable response name (Accepts the expression() function)
xlab	Treatments name (Accepts the expression() function)
xlab.factor	Provide a vector with two observations referring to the x-axis name of factors 1, 2 and 3, respectively, when there is an isolated effect of the factors. This argument uses 'parse'.
sup	Number of units above the standard deviation or average bar on the graph

Polynomial degree in case of quantitative factor (default is 1). Provide a vector

grau12	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f3 and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f2 \times f3$ and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f2 \times f3$ and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative factor 3.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (default is theme_classic())
angulo	x-axis scale text rotation
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
addmean	Plot the average value on the graph (default is TRUE)
family	Font family
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label Size
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, FAT3DBC(f1, f2, f3, bloco, resp))
```

FAT3DBC.ad 71

FAT3DBC.ad

Analysis: DBC experiments in triple factorial with aditional

Description

Analysis of an experiment conducted in a randomized block design in a triple factorial scheme with one aditional control using analysis of variance of fixed effects.

Usage

```
FAT3DBC.ad(
  f1,
  f2,
  f3,
  block,
  response,
  responseAd,
  norm = "sw",
  homog = "bt"
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE, TRUE),
  mcomp = "tukey",
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2", "F3"),
  sup = NA,
  grau = c(NA, NA, NA),
  grau12 = NA,
  grau13 = NA,
  grau23 = NA,
  grau21 = NA,
  grau31 = NA,
  grau32 = NA,
  grau123 = NA,
  grau213 = NA,
  grau312 = NA,
  fill = "lightblue",
  theme = theme_classic(),
  ad.label = "Additional",
  angulo = 0,
  errorbar = TRUE,
  addmean = TRUE,
  family = "sans",
```

72 FAT3DBC.ad

```
dec = 3,
  geom = "bar",
  textsize = 12,
  labelsize = 4,
  angle.label = 0
)
```

Arguments

f1 Numeric or complex vector with factor 1 levels
f2 Numeric or complex vector with factor 2 levels
f3 Numeric or complex vector with factor 3 levels
block Numerical or complex vector with blocks

response Numerical vector containing the response of the experiment.

responseAd Numerical vector containing the aditional response norm Error normality test (*default* is Shapiro-Wilk)

homogeneity test of veriences (*default* is Bertlett)

homog Homogeneity test of variances (default is Bartlett)
alpha.f Level of significance of the F test (default is 0.05)

alpha.t Significance level of the multiple comparison test (*default* is 0.05) quali Defines whether the factor is quantitative or qualitative (*qualitative*)

mcomp Multiple comparison test (Tukey (*default*), LSD, Scott-Knott and Duncan)

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

names.fat Allows labeling the factors 1, 2 and 3.

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab.factor Provide a vector with two observations referring to the x-axis name of factors

1, 2 and 3, respectively, when there is an isolated effect of the factors. This

argument uses 'parse'.

sup Number of units above the standard deviation or average bar on the graph

grau Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with three elements.

grau12 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor

2 and quantitative factor 1.

grau13 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 3, in the case of interaction f1 x f3 and qualitative factor

3 and quantitative factor 1.

grau23 Polynomial degree in case of quantitative factor (*default* is 1). Provide a vector

with n levels of factor 3, in the case of interaction f2 x f3 and qualitative factor

3 and quantitative factor 2.

FAT3DBC.ad 73

grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f2 x f3 and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 3.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (default is theme_classic())
ad.label	Aditional label
angulo	x-axis scale text rotation
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - $default$ is TRUE
addmean	Plot the average value on the graph (default is TRUE)
family	Font family
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label size
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

74 FAT3DBC.ad

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

```
library(AgroR)
data(enxofre)
respAd=c(2000,2400,2530,2100)
attach(enxofre)
with(enxofre, FAT3DBC.ad(f1, f2, f3, bloco, resp, respAd))
```

FAT3DIC 75

FAT3DIC

Analysis: DIC experiments in triple factorial

Description

Analysis of an experiment conducted in a completely randomized design in a triple factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT3DIC(
  f1,
  f2,
  f3,
  response,
  norm = "sw",
  homog = "bt",
  alpha.t = 0.05,
  alpha.f = 0.05,
  quali = c(TRUE, TRUE, TRUE),
  mcomp = "tukey",
  grau = c(NA, NA, NA),
  grau12 = NA,
  grau13 = NA,
  grau23 = NA,
  grau21 = NA,
  grau31 = NA,
  grau32 = NA,
  grau123 = NA,
  grau213 = NA,
  grau312 = NA,
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
  ylab = "Response",
  xlab = "",
  xlab.factor = c("F1", "F2", "F3"),
  sup = NA,
  fill = "lightblue",
  theme = theme_classic(),
  angulo = 0,
  family = "sans",
  addmean = TRUE,
  errorbar = TRUE,
  dec = 3,
  geom = "bar",
  textsize = 12,
```

76 FAT3DIC

```
labelsize = 4,
angle.label = 0
)
```

٠	3	
	f1	Numeric or complex vector with factor 1 levels
	f2	Numeric or complex vector with factor 2 levels
	f3	Numeric or complex vector with factor 3 levels
	response	Numerical vector containing the response of the experiment.
	norm	Error normality test (default is Shapiro-Wilk)
	homog	Homogeneity test of variances (default is Bartlett)
	alpha.t	Significance level of the multiple comparison test (default is 0.05)
	alpha.f	Level of significance of the F test (default is 0.05)
	quali	Defines whether the factor is quantitative or qualitative (qualitative)
	mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
	grau	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with three elements.
	grau12	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
	grau13	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f3 and qualitative factor 3 and quantitative factor 1.
	grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f2 \times f3$ and qualitative factor 3 and quantitative factor 2.
	grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction $f1 \times f2$ and qualitative factor 1 and quantitative factor 2.
	grau31	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
	grau32	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 2, in the case of interaction f2 x f3 and qualitative factor 2 and quantitative factor 3.
	grau123	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
	grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 2.

FAT3DIC 77

grau312 Polynomial degree in case of quantitative factor (default is 1). Provide a vector

with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative

factor 3.

transf Applies data transformation (default is 1; for log consider 0; 'angular' for angu-

lar transformation)

constant Add a constant for transformation (enter value)

names.fat Allows labeling the factors 1, 2 and 3.

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

xlab.factor Provide a vector with two observations referring to the x-axis name of factors

1, 2 and 3, respectively, when there is an isolated effect of the factors. This

argument uses 'parse'.

sup Number of units above the standard deviation or average bar on the graph

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat"

theme ggplot2 theme (default is theme_classic())

angulo x-axis scale text rotation

family Font family

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

dec Number of cells

geom Graph type (columns or segments)

textsize Font size labelsize Label Size angle.label label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, FAT3DIC(f1, f2, f3, resp))
```

FAT3DIC.ad

Analysis: DIC experiments in triple factorial with aditional

Description

Analysis of an experiment conducted in a completely randomized design in a triple factorial scheme with one aditional control using analysis of variance of fixed effects.

Usage

```
FAT3DIC.ad(
  f1,
  f2,
  f3,
  repe,
  response,
  responseAd,
  norm = "sw",
```

```
homog = "bt",
alpha.f = 0.05,
alpha.t = 0.05,
quali = c(TRUE, TRUE, TRUE),
mcomp = "tukey",
transf = 1,
constant = 0,
names.fat = c("F1", "F2", "F3"),
ylab = "Response",
xlab = "",
xlab.factor = c("F1", "F2", "F3"),
sup = NA,
grau = c(NA, NA, NA),
grau12 = NA,
grau13 = NA,
grau23 = NA,
grau21 = NA,
grau31 = NA,
grau32 = NA,
grau123 = NA,
grau213 = NA,
grau312 = NA,
fill = "lightblue",
theme = theme_classic(),
ad.label = "Additional",
angulo = 0,
errorbar = TRUE,
addmean = TRUE,
family = "sans",
dec = 3,
geom = "bar",
textsize = 12,
labelsize = 4,
angle.label = 0
```

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
repe	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
responseAd	Numerical vector containing the aditional response
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)

alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3.
ylab	Variable response name (Accepts the expression() function)
xlab	Treatments name (Accepts the expression() function)
xlab.factor	Provide a vector with two observations referring to the x-axis name of factors 1, 2 and 3, respectively, when there is an isolated effect of the factors. This argument uses 'parse'.
sup	Number of units above the standard deviation or average bar on the graph
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f3 and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f2 x f3 and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 2, in the case of interaction f2 x f3 and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor ($default$ is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f1 \times f2 \times f3$ and quantitative factor 3.

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

theme ggplot2 theme (default is theme_classic())

ad.label Aditional label

angulo x-axis scale text rotation

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

addmean Plot the average value on the graph (*default* is TRUE)

family Font family dec Number of cells

geom Graph type (columns or segments)

textsize Font size labelsize Label size angle.label label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

82 ibarplot.double

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
respAd=c(2000,2400,2530,2100)
attach(enxofre)
with(enxofre, FAT3DIC.ad(f1, f2, f3, bloco, resp, respAd))
```

ibarplot.double

Invert letters for two factor chart

Description

invert uppercase and lowercase letters in graph for factorial scheme the subdivided plot with significant interaction

Usage

```
ibarplot.double(analysis)
```

Arguments

analysis

FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object

Value

Return column chart for two factors

```
data(covercrops)
attach(covercrops)
a=FAT2DBC(A, B, Bloco, Resp, ylab=expression("Yield"~(Kg~"100 m"^2)),
legend = "Cover crops",alpha.f = 0.3,family = "serif")
ibarplot.double(a)
```

laranja 83

laranja

Dataset: Orange plants under different rootstocks

Description

An experiment was conducted with the objective of studying the behavior of nine rootstocks for the Valencia orange tree. The data set refers to the 1973 evaluation (12 years old). The rootstocks are: T1: Tangerine Sunki; T2: National rough lemon; T3: Florida rough lemon; T4: Cleopatra tangerine; T5: Citranger-troyer; T6: Trifoliata; T7: Clove Tangerine; T8: Country orange; T9: Clove Lemon. The number of fruits per plant was evaluated.

Usage

```
data(laranja)
```

Format

data.frame containing data set

f1 Categorical vector with treatments

bloco Categorical vector with block

resp Numeric vector with number of fruits per plant

References

Planejamento e Analise Estatistica de Experimentos Agronomicos (2013) - Decio Barbin - pg. 72

See Also

cloro, enxofre, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

```
data(laranja)
```

line_plot

line_plot

Graph: Line chart

Description

Performs a descriptive line graph with standard deviation bars

Usage

```
line_plot(
   time,
   response,
   factor = NA,
   errorbar = "sd",
   ylab = "Response",
   xlab = "Time",
   legend.position = "right",
   theme = theme_classic()
)
```

Arguments

time Vector containing the x-axis values
response Vector containing the y-axis values
factor Vector containing a categorical factor
errorbar Error bars (sd or se)

ylab y axis title xlab x axis title

 ${\tt legend.position}$

Legend position

theme ggplot2 theme (default is theme_classic())

Value

Returns a line chart with error bars

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
radargraph, sk_graph, plot_TH, corgraph, spider_graph
```

logistic 85

Examples

```
dose=rep(c(0,2,4,6,8,10),e=3,2)
resp=c(seq(1,18,1),seq(2,19,1))
fator=rep(c("A","B"),e=18)
line_plot(dose,resp,fator)
```

logistic

Analysis: Logistic regression

Description

Logistic regression is a very popular analysis in agrarian sciences, such as in fruit growth curves, seed germination, etc...The logistic function performs the analysis using 3 or 4 parameters of the logistic model, being imported from the LL function .3 or LL.4 of the drc package (Ritz & Ritz, 2016).

Usage

```
logistic(
   trat,
   resp,
   npar = "LL.3",
   error = "SE",
   ylab = "Dependent",
   xlab = expression("Independent"),
   theme = theme_classic(),
   legend.position = "top",
   r2 = "all",
   width.bar = NA,
   scale = "none",
   textsize = 12,
   font.family = "sans"
)
```

trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.
npar	Number of model parameters
error	Error bar (It can be SE - default, SD or FALSE)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the expression() function)
theme	ggplot2 theme (<i>default</i> is theme_bw())
legend.position	
	Legend position (<i>default</i> is $c(0.3,0.8)$)

86 logistic

r2 Coefficient of determination of the mean or all values (*default* is all)

width.bar Bar width

scale Sets x scale (*default* is none, can be "log")

textsize Font size

font.family Font family (*default* is sans)

Details

The three-parameter log-logistic function with lower limit 0 is

$$f(x) = 0 + \frac{d}{1 + \exp(b(\log(x) - \log(e)))}$$

The four-parameter log-logistic function is given by the expression

$$f(x) = c + \frac{d - c}{1 + \exp(b(\log(x) - \log(e)))}$$

The function is symmetric about the inflection point (e).

Value

The function allows the automatic graph and equation construction of the logistic model, provides important statistics, such as the Akaike (AIC) and Bayesian (BIC) inference criteria, coefficient of determination (r2), square root of the mean error (RMSE).

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package 'drc'. Creative Commons: Mountain View, CA, USA, 2016.

```
data("emerg")
with(emerg, logistic(time, resp,xlab="Time (days)",ylab="Emergence (%)"))
with(emerg, logistic(time, resp,npar="LL.4",xlab="Time (days)",ylab="Emergence (%)"))
```

mirtilo 87

mirtilo Dataset: Cutting blueberry data

Description

An experiment was carried out in order to evaluate the rooting (resp1) of blueberry cuttings as a function of the cutting size (Treatment Colume). This experiment was repeated three times (Location column) and a randomized block design with four replications was adopted.

Usage

```
data(mirtilo)
```

Format

data.frame containing data set
trat Categorical vector with treatments
exp Categorical vector with experiment
bloco Categorical vector with block
resp Numeric vector

See Also

cloro, enxofre, laranja, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

```
data(mirtilo)
attach(mirtilo)
```

orchard

Dataset: Orchard

Description

An experiment was carried out to analyze the treatments in orchards applied in the rows and between the rows, in a split-plot scheme according to a randomized block design. For this case, the line and leading are considered the levels of the factor applied in the plots and the treatments are considered the levels of the factor applied in the subplots. Microbial biomass carbon was analyzed.

Usage

```
data(orchard)
```

88 passiflora

Format

data.frame containing data set

A Categorical vector with plot

B Categorical vector with split-plot

Bloco Categorical vector with block

Resp Numeric vector with microbial biomass carbon

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(orchard)

passiflora

Dataset: Substrate data in the production of passion fruit seedlings

Description

An experiment was carried out in order to evaluate the influence of the substrate on the dry mass of aerial part and root in yellow sour passion fruit. The experiment was conducted in a randomized block design with four replications. The treatments consisted of five substrates (Vermiculite, MC Normal, Carolina Soil, Mc organic and sand)

Usage

```
data(passiflora)
```

Format

data.frame containing data set

trat Categorical vector with substrate

bloco Categorical vector with block

MSPA Numeric vector with dry mass of aerial part

MSR Numeric vector with dry mass of root

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

```
data(passiflora)
```

PCA_function 89

 ${\tt PCA_function}$

Analysis: Principal components analysis

Description

This function performs principal component analysis.

Usage

```
PCA_function(
  data,
  scale = TRUE,
  text = TRUE,
  pointsize = 5,
  textsize = 12,
  labelsize = 4,
 linesize = 0.6,
  repel = TRUE,
 ylab = NA,
  xlab = NA,
  groups = NA,
  sc = 1,
  font.family = "sans",
  theme = theme_bw(),
  label.legend = "Cluster",
  type.graph = "biplot"
)
```

data	Data.frame with data set. Line name must indicate the treatment
scale	Performs data standardization (default is TRUE)
text	Add label (default is TRUE)
pointsize	Point size (default is 5)
textsize	Text size (default is 12)
labelsize	Label size (default is 4)
linesize	Line size (default is 0.8)
repel	Avoid text overlay (default is TRUE)
ylab	Names y-axis
xlab	Names x-axis
groups	Define grouping
sc	Secondary axis scale ratio (default is 1)
font.family	Font family (default is sans)

90 pepper

theme Theme ggplot2 (default is theme_bw())
label.legend Legend title (when group is not NA)
type.graph Type of chart (default is biplot)

Details

The type.graph argument defines the graph that will be returned, in the case of "biplot" the biplot graph is returned with the first two main components and with eigenvalues and eigenvectors. In the case of "scores" only the treatment scores are returned, while for "cor" the correlations are returned. For "corPCA" a correlation between the vectors with the components is returned.

Value

The eigenvalues and eigenvectors, the explanation percentages of each principal component, the correlations between the vectors with the principal components, as well as graphs are returned.

Author(s)

Gabriel Danilo Shimizu

Examples

data(pomegranate)
medias=tabledesc(pomegranate)
PCA_function(medias)

pepper Dataset: Pepper

Description

A vegetable breeder is characterizing five mini pepper accessions from the State University of Londrina germplasm bank for agronomic and biochemical variables. The experiment was conducted in a completely randomized design with four replications

Usage

data(pepper)

Format

data.frame containing data set

Acesso Categorical vector with accessions

MS Numeric vector com dry mass

VitC Numeric vector with Vitamin C

phao 91

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(pepper)

phao

Dataset: Osmocote in Phalaenopsis sp.

Description

The objective of the work was to evaluate the effect of doses of osmocote (15-09-12-N-P2O5-K2O, respectively) on the initial development of the orchid *Phalaenopsis* sp. The osmocote fertilizer was added in the following doses: 0, 2, 4, 6 and 8 g vase-1. After twelve months, leaf length was evaluated.

Usage

data(phao)

Format

data.frame containing data set

dose Numeric vector with doses

comp Numeric vector with leaf length

References

de Paula, J. C. B., Junior, W. A. R., Shimizu, G. D., Men, G. B., & de Faria, R. T. (2020). Fertilizante de liberacao controlada no crescimento inicial da orquidea *Phalaenopsis* sp. Revista Cultura Agronomica, 29(2), 289-299.

See Also

pomegranate, passiflora, cloro, enxofre, laranja, mirtilo, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

data(phao)

92 plot_cor

plot_cor

Graph: Plot correlation

Description

Correlation analysis function (Pearson or Spearman)

Usage

```
plot_cor(
 Х,
 у,
 method = "pearson",
 ylab = "Dependent",
 xlab = "Independent",
  theme = theme_classic(),
 pointsize = 5,
  shape = 21,
 fill = "gray",
  color = "black",
 axis.size = 12,
 ic = TRUE,
  title = NA,
  family = "sans"
)
```

x	Numeric vector with independent variable
у	Numeric vector with dependent variable
method	Method correlation (default is Pearson)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the expression() function)
theme	ggplot2 theme (default is theme_classic())
pointsize	Point size
shape	shape format
fill	Fill point
color	Color point
axis.size	Axis text size
ic	add interval of confidence
title	title
family	Font family

plot_interaction 93

Value

The function returns a graph for correlation

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

Examples

```
data("pomegranate")
with(pomegranate, plot_cor(WL, SS, xlab="WL", ylab="SS"))
```

plot_interaction

Graph: Interaction plot

Description

Performs an interaction graph from an output of the FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC commands.

Usage

```
plot_interaction(
   a,
   box_label = TRUE,
   repel = FALSE,
   pointsize = 3,
   linesize = 0.8,
   width.bar = 0.05,
   add.errorbar = TRUE
)
```

a	FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object
box_label	Add box in label
repel	a boolean, whether to use ggrepel to avoid overplotting text labels or not.
pointsize	Point size
linesize	Line size (Trendline and Error Bar)
width.bar	width of the error bars.
add.errorbar	Add error bars.

94 plot_jitter

Value

Returns an interaction graph with averages and letters from the multiple comparison test

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

Examples

```
data(cloro)
a=with(cloro, FAT2DIC(f1, f2, resp))
plot_interaction(a)
```

plot_jitter

Graph: Column, box or segment chart with observations

Description

The function performs the construction of graphs of boxes, columns or segments with all the observations represented in the graph.

Usage

```
plot_jitter(model)
```

Arguments

model

DIC, DBC or DQL object

Value

Returns with graph of boxes, columns or segments with all the observations represented in the graph.

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

```
data("pomegranate")
a=with(pomegranate,DIC(trat,WL,geom="point"))
plot_jitter(a)
```

plot_TH 95

plot_TH

Graph: Climate chart of temperature and humidity

Description

The plot_TH function allows the user to build a column/line graph with climatic parameters of temperature (maximum, minimum and average) and relative humidity (UR) or precipitation. This chart is widely used in scientific work in agrarian science

Usage

```
plot_TH(
  tempo,
  Tmed,
  Tmax,
  Tmin,
 UR,
  xlab = "Time",
 yname1 = expression("Humidity (%)"),
 yname2 = expression("Temperature ("^o * "C)"),
  legend.H = "Humidity",
  legend.tmed = "Tmed",
  legend.tmin = "Tmin",
  legend.tmax = "Tmax",
  colormax = "red",
  colormin = "blue",
  colormean = "darkgreen",
  fillbar = "gray80",
  limitsy1 = c(0, 100),
  x = "days",
  breaks = "1 months",
  textsize = 12,
  legendsize = 12,
  titlesize = 12,
  linesize = 1,
  date_format = "%m-%Y",
  sc = 2.5,
  angle = 0,
  legend.position = "bottom",
  theme = theme_classic()
)
```

Arguments

tempo Vector with times

Tmed Vector with mean temperature

96 plot_TH

Tmax Vector with maximum temperature
Tmin Vector with minimum temperature

UR Vector with relative humidity or precipitation

xlab x axis name yname1 y axis name

yname2 Secondary y-axis name

legend.H Legend column

legend.tmedLegend mean temperaturelegend.tminLegend minimum temperaturelegend.tmaxLegend maximum temperature

colormax Maximum line color (default is "red")

colormin Minimum line color (default is "blue")

colormean Midline color (default is "darkgreen")

fillbar Column fill color (default is "gray80")

limitsy1 Primary y-axis scale (default is c(0,100))

x scale type (days or data, default is "days")

breaks Range for x scale when x = "date" (default is 1 months)

textsize Axis text size
legendsize Legend text size
titlesize Axis title size
linesize Line size

date_format Date format for x="data"

sc Scale for secondary y-axis in relation to primary y-axis (declare the number of

times that y2 is less than or greater than y1, the default being 2.5)

angle x-axis scale text rotation

legend.position

Legend position

theme ggplot2 theme

Value

Returns row and column graphs for graphical representation of air temperature and relative humidity. Graph normally used in scientific articles

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

plot_TH1 97

See Also

radargraph, sk_graph, barplot_positive, corgraph, plot_TH1, spider_graph, line_plot

Examples

```
library(AgroR)
data(weather)
with(weather, plot_TH(tempo, Tmed, Tmax, Tmin, UR))
```

plot_TH1

Graph: Climate chart of temperature and humidity (Model 2)

Description

The plot_TH1 function allows the user to build a column/line graph with climatic parameters of temperature (maximum, minimum and average) and relative humidity (UR) or precipitation. This chart is widely used in scientific work in agrarian science

Usage

```
plot_TH1(
  tempo,
  Tmed,
  Tmax,
  Tmin,
  UR,
  xlab = "Time",
  yname1 = expression("Humidity (%)"),
  yname2 = expression("Temperature ("^o * "C)"),
  legend.T = "Temperature",
  legend.H = "Humidity",
  legend.tmed = "Tmed",
  legend.tmin = "Tmin",
  legend.tmax = "Tmax",
  colormax = "red",
  colormin = "blue",
  colormean = "darkgreen",
  fillarea = "darkblue",
  facet.fill = "#FF9933",
  panel.grid = FALSE,
  x = "days",
  breaks = "1 months",
  textsize = 12,
  legendsize = 12,
  titlesize = 12,
  linesize = 1,
  date_format = "%m-%Y",
```

98 plot_TH1

```
angle = 0,
legend.position = c(0.1, 0.3)
```

Arguments

tempo Vector with times

Tmed Vector with mean temperature

Tmax Vector with maximum temperature

Tmin Vector with minimum temperature

UR Vector with relative humidity or precipitation

xlab x axis name yname1 y axis name

yname2 Secondary y-axis name legend.T faceted title legend 1 legend.H faceted title legend 2

legend.tmed Legend mean temperature
legend.tmin Legend minimum temperature
legend.tmax Legend maximum temperature

colormax Maximum line color (default is "red")
colormin Minimum line color (default is "blue")
colormean Midline color (default is "darkgreen")
fillarea area fill color (default is "darkblue")

facet.fill faceted title fill color (*default* is #FF9933)

panel.grid remove grid line (default is FALSE)

x x scale type (days or data, default is "days")

breaks Range for x scale when x = "date" (default is 1 months)

textsize Axis text size
legendsize Legend text size
titlesize Axis title size
linesize Line size

date_format Date format for x="data" angle x-axis scale text rotation

legend.position

Legend position

Value

Returns row and column graphs for graphical representation of air temperature and relative humidity. Graph normally used in scientific articles

polynomial 99

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

radargraph, sk_graph, barplot_positive, corgraph, spider_graph, line_plot

Examples

```
library(AgroR)
data(weather)
with(weather, plot_TH1(tempo, Tmed, Tmax, Tmin, UR))
```

polynomial

Analysis: Linear regression graph

Description

Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor

Usage

```
polynomial(
  trat,
  resp,
  ylab = "Response",
  xlab = "Independent",
  yname.poly = "y",
  xname.poly = "x",
  grau = NA,
  theme = theme_classic(),
  point = "mean_sd",
  color = "gray80",
  posi = "top",
  textsize = 12,
  se = FALSE,
  ylim = NA,
  family = "sans",
  pointsize = 4.5,
  linesize = 0.8,
 width.bar = NA,
  n = NA,
  SSq = NA,
  DFres = NA
)
```

100 polynomial

Arguments

resp Numerical vector with treatments (Declare as numeric)
resp Numerical vector containing the response of the experiment.
ylab Dependent variable name (Accepts the *expression*() function)
xlab Independent variable name (Accepts the *expression*() function)

yname.poly Y name in equation xname.poly X name in equation

grau Degree of the polynomial (1, 2 or 3) theme ggplot2 theme (default is theme_classic())

point Defines whether to plot mean ("mean"), all repetitions ("all"), mean with stan-

dard deviation ("mean_sd") or mean with standard error (default - "mean_se").

color Graph color (default is gray80)

posi Legend position

textsize Font size

se Adds confidence interval (*default* is FALSE)

ylim y-axis scale family Font family pointsize Point size

line size (Trendline and Error Bar)

width.bar width of the error bars of a regression graph.

n Number of decimal places for regression equations

SSq Sum of squares of the residue
DFres Residue freedom degrees

Value

Returns linear, quadratic or cubic regression analysis.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

```
polynomial2_color
```

```
data("phao")
with(phao, polynomial(dose,comp, grau = 2))
```

polynomial2 101

polynomial2

Analysis: Linear regression graph in double factorial

Description

Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative

Usage

```
polynomial2(
  fator1,
  resp,
  fator2,
  color = NA,
 grau = NA,
 ylab = "Response",
 xlab = "Independent",
  theme = theme_classic(),
  se = FALSE,
 point = "mean_sd",
 legend.title = "Treatments",
  posi = "top",
  textsize = 12,
 ylim = NA,
  family = "sans",
 width.bar = NA,
 pointsize = 3,
 linesize = 0.8,
  separate = c("(\"", "\")"),
 n = NA,
 DFres = NA,
  SSq = NA
)
```

fator1	Numeric or complex vector with factor 1 levels
resp	Numerical vector containing the response of the experiment.
fator2	Numeric or complex vector with factor 2 levels
color	Graph color (default is NA)
grau	Degree of the polynomial (1,2 or 3)
ylab	Dependent variable name (Accepts the expression() function)
xlab	Independent variable name (Accepts the expression() function)
theme	ggplot2 theme (<i>default</i> is theme_classic())

102 polynomial2

se Adds confidence interval (*default* is FALSE)

point Defines whether to plot all points ("all"), mean ("mean"), mean with standard

deviation (default - "mean_sd") or mean with standard error ("mean_se").

legend.title Title legend

posi Legend position

textsize Font size (default is 12)

ylim y-axis scale

family Font family (*default* is sans)

width.bar width of the error bars of a regression graph.

pointsize Point size (default is 4)

linesize line size (Trendline and Error Bar)

separate Separation between treatment and equation (*default* is c("(\"","\")"))

n Number of decimal places for regression equations

DFres Residue freedom degrees

SSq Sum of squares of the residue

Value

Returns two or more linear, quadratic or cubic regression analyzes.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

polynomial, polynomial2_color

```
dose=rep(c(0,0,0,2,2,2,4,4,4,6,6,6),3)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80,
12,14,15,23,24,25,50,54,56,80,90,40,
12,14,15,3,4,5,50,54,56,80,90,40)
trat=rep(c("A","B","C"),e=12)
polynomial2(dose, resp, trat, grau=c(1,2,3))
```

polynomial2_color 103

polynomial2_color

Analysis: Linear regression graph in double factorial with color graph

Description

Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative

Usage

```
polynomial2_color(
  fator1,
  resp,
  fator2,
  color = NA,
 grau = NA,
 ylab = "Response",
 xlab = "independent",
  theme = theme_classic(),
  se = FALSE,
 point = "mean_se",
 legend.title = "Tratamentos",
  posi = "top",
  textsize = 12,
 ylim = NA,
  family = "sans",
 width.bar = NA,
 pointsize = 5,
 linesize = 0.8,
  separate = c("(\"", "\")"),
 n = NA,
 DFres = NA,
  SSq = NA
)
```

fator1	Numeric or complex vector with factor 1 levels
resp	Numerical vector containing the response of the experiment.
fator2	Numeric or complex vector with factor 2 levels
color	Graph color (default is NA)
grau	Degree of the polynomial (1,2 or 3)
ylab	Dependent variable name (Accepts the expression() function)
xlab	Independent variable name (Accepts the expression() function)
theme	ggplot2 theme (<i>default</i> is theme_classic())

104 polynomial2_color

se Adds confidence interval (*default* is FALSE)

point Defines whether to plot all points ("all"), mean ("mean"), mean with standard

deviation ("mean_sd") or mean with standard error (default - "mean_se").

legend.title Title legend

posi Legend position

textsize Font size (default is 12)

ylim y-axis scale

family Font family (*default* is sans)

width.bar width of the error bars of a regression graph.

pointsize Point size (default is 4)

linesize line size (Trendline and Error Bar)

separate Separation between treatment and equation (*default* is c("(\"","\")"))

n Number of decimal places for regression equations

DFres Residue freedom degrees

SSq Sum of squares of the residue

Value

Returns two or more linear, quadratic or cubic regression analyzes.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

polynomial, polynomial2

```
dose=rep(c(0,0,0,2,2,2,4,4,4,6,6,6),3)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80,
12,14,15,23,24,25,50,54,56,80,90,40,
12,14,15,3,4,5,50,54,56,80,90,40)
trat=rep(c("A","B","C"),e=12)
polynomial2_color(dose, resp, trat, grau=c(1,2,3))
```

pomegranate 105

pomegranate

Dataset: Pomegranate data

Description

An experiment was conducted with the objective of studying different products to reduce the loss of mass in postharvest of pomegranate fruits. The experiment was conducted in a completely randomized design with four replications. Treatments are: T1: External Wax; T2: External + Internal Wax; T3: External Orange Oil; T4: Internal + External Orange Oil; T5: External sodium hypochlorite; T6: Internal + External sodium hypochlorite

Usage

```
data(pomegranate)
```

Format

data.frame containing data set

trat Categorical vector with treatments

WL Numeric vector weights loss

SS Numeric vector solid soluble

AT Numeric vector titratable acidity

ratio Numeric vector with ratio (SS/AT)

See Also

cloro, enxofre, laranja, mirtilo, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora

Examples

data(pomegranate)

porco

Dataset: Pig development and production

Description

An experiment whose objective was to study the effect of castration age on the development and production of pigs, evaluating the weight of the piglets. Four treatments were studied: A - castration at 56 days of age; B - castration at 7 days of age; C - castration at 36 days of age; D - whole (not castrated); E - castration at 21 days of age. The Latin square design was used in order to control the variation between litters (lines) and the variation in the initial weight of the piglets (columns), with the experimental portion consisting of a piglet.

106 PSUBDBC

Usage

```
data(porco)
```

Format

```
data.frame containing data set

trat Categorical vector with treatments
linhas Categorical vector with lines
colunas Categorical vector with columns
resp Numeric vector
```

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(porco)
```

PSUBDBC

Analysis: DBC experiments in split-plot

Description

Analysis of an experiment conducted in a randomized block design in a split-plot scheme using fixed effects analysis of variance.

Usage

```
PSUBDBC(
  f1,
  f2,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
```

PSUBDBC 107

```
geom = "bar",
theme = theme_classic(),
ylab = "Response",
xlab = "",
xlab.factor = c("F1", "F2"),
color = "rainbow",
textsize = 12,
labelsize = 4,
dec = 3,
legend = "Legend",
errorbar = TRUE,
addmean = TRUE,
ylim = NA,
point = "mean_se",
fill = "lightblue",
angle = 0,
family = "sans",
posi = "right",
angle.label = 0
```

Arguments f1

geom

	rumene of complex vector with plot levels
f2	Numeric or complex vector with subplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)

Graph type (columns or segments (For simple effect only))

Numeric or complex vector with plot levels

108 PSUBDBC

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function)

xlab Treatments name (Accepts the *expression*() function)

xlab.factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

color When the columns are different colors (Set fill-in argument as "trat")

textsize Font size (default is 12) labelsize Font size (default is 4)

dec Number of cells (default is 3)

legend Legend title name

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

addmean Plot the average value on the graph (*default* is TRUE)

ylim y-axis limit

point Point type for regression ("mean_se", "mean_sd", "mean" or "all")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation family Font family (default is sans)

posi Legend position angle.label Label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett), the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu

PSUBDIC 109

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

PSUBDIC

Analysis: DIC experiments in split-plot

Description

Analysis of an experiment conducted in a completely randomized design in a split-plot scheme using fixed effects analysis of variance.

Usage

```
PSUBDIC(
f1,
f2,
block,
response,
norm = "sw",
homog = "bt",
alpha.f = 0.05,
```

110 PSUBDIC

```
alpha.t = 0.05,
  quali = c(TRUE, TRUE),
 mcomp = "tukey",
 grau = c(NA, NA),
 grau12 = NA,
 grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
 ylab = "Response",
 xlab = "",
 xlab.factor = c("F1", "F2"),
  fill = "lightblue",
  angle = 0,
  family = "sans",
  color = "rainbow",
  legend = "Legend",
 errorbar = TRUE,
  addmean = TRUE,
  textsize = 12,
 labelsize = 4,
 dec = 3,
 ylim = NA,
 posi = "right",
 point = "mean_se",
 angle.label = 0
)
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with subplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \times f2$ and qualitative factor 2 and quantitative factor 1.

PSUBDIC 111

grau21 Polynomial degree in case of quantitative factor (default is 1). Provide a vector

with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor

1 and quantitative factor 2.

transf Applies data transformation (default is 1; for log consider 0)

constant Add a constant for transformation (enter value)

geom Graph type (columns or segments (For simple effect only))

theme ggplot2 theme (default is theme_classic())

ylab Variable response name (Accepts the *expression*() function) xlab Treatments name (Accepts the *expression*() function)

xlab.factor Provide a vector with two observations referring to the x-axis name of factors 1

and 2, respectively, when there is an isolated effect of the factors. This argument

uses 'parse'.

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation family Font family (default is sans)

color When the columns are different colors (Set fill-in argument as "trat")

legend Legend title name

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

addmean Plot the average value on the graph (*default* is TRUE)

textsize Font size (default is 12)
labelsize Label size (default is 4)
dec Number of cells (default is 3)

ylim y-axis limit posi Legend position

point Point type for regression ("mean_se", "mean_sd", "mean" or "all")

angle.label Label angle

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett), the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

112 PSUBFAT2DBC

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

double factorial scheme

Description

This function performs the analysis of a randomized block design in a split-plot with a subplot in a double factorial scheme.

Usage

```
PSUBFAT2DBC(
   f1,
   f2,
   f3,
   block,
   resp,
   alpha.f = 0.05,
```

PSUBSUBDBC 113

```
alpha.t = 0.05,
norm = "sw",
homog = "bt",
mcomp = "tukey")
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with splitplot levels
f3	Numeric or complex vector with splitsplitplot levels
block	Numeric or complex vector with blocks
resp	Numeric vector with responses
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)

Value

Analysis of variance of fixed effects and multiple comparison test of Tukey, Scott-Knott, LSD or Duncan.

Examples

```
f1=rep(c("PD","PDE","C"), e = 40);f1=factor(f1,unique(f1))
f2=rep(c(300,400), e = 20,3);f2=factor(f2,unique(f2))
f3=rep(c("c1", "c2", "c3", "c4"), e = 5,6);f3=factor(f3,unique(f3))
bloco=rep(paste("B",1:5),24); bloco=factor(bloco,unique(bloco))
set.seed(10)
resp=rnorm(120,50,5)
PSUBFAT2DBC(f1,f2,f3,bloco,resp,alpha.f = 0.5) # force triple interaction
PSUBFAT2DBC(f1,f2,f3,bloco,resp,alpha.f = 0.4) # force double interaction
```

PSUBSUBDBC

Analysis: DBC experiments in split-split-plot

Description

Analysis of an experiment conducted in a randomized block design in a split-split-plot scheme using analysis of variance of fixed effects.

114 PSUBSUBDBC

Usage

```
PSUBSUBDBC(
f1,
f2,
f3,
block,
response,
alpha.f = 0.05,
alpha.t = 0.05,
dec = 3,
mcomp = "tukey"
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with splitplot levels
f3	Numeric or complex vector with splitsplitplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
dec	Number of cells
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)

Value

Analysis of variance of fixed effects and multiple comparison test of Tukey, LSD or Duncan.

Note

The PSUBSUBDBC function does not present residual analysis, interaction breakdown, graphs and implementations of various multiple comparison or regression tests. The function only returns the analysis of variance and multiple comparison test of Tukey, LSD or Duncan.

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

```
library(AgroR)
data(enxofre)
with(enxofre, PSUBSUBDBC(f1, f2, f3, bloco, resp))
```

radargraph 115

rada	rgraph	
i aua	rgrabn	

Graph: Circular column chart

Description

Circular column chart of an experiment with a factor of interest or isolated effect of a factor

Usage

```
radargraph(model, ylim = NA, labelsize = 4, transf = FALSE)
```

Arguments

model DIC, DBC or DQL object

ylim y-axis limit

labelsize Font size of the labels

transf If the data has been transformed (*default* is FALSE)

Value

Returns pie chart with averages and letters from the Scott-Knott cluster test

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
barplot_positive, sk_graph, plot_TH, corgraph, spider_graph, line_plot
```

```
data("laranja")
a=with(laranja, DBC(trat,bloco,resp, mcomp = "sk"))
radargraph(a)
```

seg_graph

seg_graph

Graph: Point graph for one factor

Description

This is a function of the point graph for one factor

Usage

```
seg_graph(model, fill = "lightblue", horiz = TRUE, pointsize = 4.5)
```

Arguments

model DIC, DBC or DQL object

fill fill bars

horiz Horizontal Column (default is TRUE)

pointsize Point size

Value

Returns a point chart for one factor

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
```

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

```
radargraph, barplot_positive, plot_TH, corgraph, spider_graph, line_plot
```

seg_graph2

seg_graph2

Graph: Point graph for one factor model 2

Description

This is a function of the point graph for one factor

Usage

```
seg_graph2(
  model,
  theme = theme_gray(),
  pointsize = 4,
  pointshape = 16,
  horiz = TRUE,
  vjust = -0.6
)
```

Arguments

model DIC, DBC or DQL object
theme ggplot2 theme
pointsize Point size
pointshape Format point (default is 16)
horiz Horizontal Column (default is TRUE)
vjust vertical adjusted

Value

Returns a point chart for one factor

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
radargraph, barplot_positive, plot_TH, corgraph, spider_graph, line_plot
```

118 sensorial

Examples

sensorial

Dataset: Sensorial data

Description

Set of data from a sensory analysis with six participants in which different combinations (blend) of the grape cultivar bordo and niagara were evaluated. Color (CR), aroma (AR), flavor (SB), body (CP) and global (GB) were evaluated. The data frame presents the averages of the evaluators.

Usage

```
data(sensorial)
```

Format

```
data.frame containing data set

Blend Categorical vector with treatment
variable Categorical vector with variables
resp Numeric vector
```

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

```
data(sensorial)
```

simulate1 119

simulate1

Dataset: Simulated data dict

Description

Simulated data from a completely randomized experiment with multiple assessments over time

Usage

```
data(simulate1)
```

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

resp Categorical vector with response

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(simulate1)
```

simulate2

Dataset: Simulated data dbct

Description

Simulated data from a latin square experiment with multiple assessments over time

Usage

```
data(simulate2)
```

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

bloco Categorical vector with block

resp Categorical vector with response

120 simulate3

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

```
data(simulate2)
```

simulate3

Dataset: Simulated data dqlt

Description

Simulated data from a completely randomized experiment with multiple assessments over time

Usage

```
data(simulate3)
```

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

linhas Categorical vector with line

colunas Categorical vector with column

resp Categorical vector with response

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, tomate, weather, phao, passiflora, aristolochia

```
data(simulate3)
```

sketch 121

sketch

Utils: Experimental sketch

Description

Experimental sketching function

Usage

```
sketch(
  trat,
  trat1 = NULL,
  trat2 = NULL,
  r,
  design = "DIC",
  pos = "line",
  color.sep = "all",
  ID = FALSE,
  add.streets.y = NA,
  add.streets.x = NA,
  label.x = "",
label.y = "",
  axissize = 12,
  legendsize = 12,
  labelsize = 4,
  export.csv = FALSE,
  comment.caption = NULL
)
```

Arguments

trat	Vector with factor A levels
trat1	Vector with levels of factor B (Set to NULL if not factorial or psub)
trat2	Vector with levels of factor C (Set to NULL if not factorial)
r	Number of repetitions
design	Experimental design (see note)
pos	Repeat position (line or column),
color.sep	Color box
ID	plot Add only identification in sketch
add.streets.y	Adds streets by separating treatments in row or column. The user must supply a numeric vector grouping the rows or columns that must be together. See the example.
add.streets.x	Adds streets by separating treatments in row or column. The user must supply a numeric vector grouping the rows or columns that must be together. See the example.

122 sketch

```
label.x text in x
label.y text in y
axissize Axis size
legendsize Title legend size
labelsize Label size
export.csv Save table template based on sketch in csv
comment.caption
Add comment in caption
```

Value

Returns an experimental sketch according to the specified design.

Note

The sketches have only a rectangular shape, and the blocks (in the case of randomized blocks) can be in line or in a column.

For the design argument, you can choose from the following options:

```
design="DIC" Completely randomized design
design="DBC" Randomized block design
design="DQL" Latin square design
design="FAT2DIC" DIC experiments in double factorial
design="FAT2DBC" DBC experiments in double factorial
design="FAT3DIC" DIC experiments in triple factorial
design="FAT3DBC" DBC experiments in triple factorial
design="FAT3DBC" DBC experiments in triple factorial
design="PSUBDIC" DIC experiments in split-plot
design="PSUBDBC" DBC experiments in split-plot
design="PSUBSUBDBC" DBC experiments in split-split-plot
design="STRIP-PLOT" Strip-plot DBC experiments
```

For the color.sep argument, you can choose from the following options:

```
design="DIC" use "all", "bloco" or "none"

design="DBC" use "all", "bloco" or "none"

design="DQL" use "all", "column", "line" or "none"

design="FAT2DIC" use "all", "f1", "f2" or "none"

design="FAT2DBC" use "all", "f1", "f2", "block" or "none"

design="FAT3DIC" use "all", "f1", "f2", "f3" or "none"

design="FAT3DBC" use "all", "f1", "f2", "f3", "block" or "none"

design="PSUBDIC" use "all", "f1", "f2" or "none"

design="PSUBDBC" use "all", "f1", "f2", "block" or "none"

design="PSUBSUBDBC" use "all", "f1", "f2", "block" or "none"
```

sk_graph 123

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

References

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
Trat=paste("Tr",1:6)
# Completely randomized design
sketch(Trat, r=3)
sketch(Trat,r=3,pos="column")
sketch(Trat,r=3,color.sep="none")
sketch(Trat,r=3,color.sep="none",ID=TRUE)
sketch(Trat,r=3,pos="column",add.streets.x=c(1,1,2,2,3,3))
# Randomized block design
sketch(Trat, r=3, design="DBC")
sketch(Trat, r=3, design="DBC",pos="column")
sketch(Trat, r=3, design="DBC",pos="column",add.streets.x=c(1,1,2))
# Completely randomized experiments in double factorial
sketch(trat=c("A","B"),
     trat1=c("A","B","C"),
     design = "FAT2DIC",
     r=3)
sketch(trat=c("A","B"),
     trat1=c("A","B","C"),
     design = "FAT2DIC",
     r=3,
     pos="column")
```

sk_graph

Graph: Scott-Knott graphics

Description

This is a function of the bar graph for the Scott-Knott test

124 soybean

Usage

```
sk_graph(model, horiz = TRUE)
```

Arguments

model DIC, DBC or DQL object

horiz Horizontal Column (default is TRUE)

Value

Returns a bar chart with columns separated by color according to the Scott-Knott test

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
radargraph, barplot_positive, plot_TH, corgraph, spider_graph, line_plot
```

Examples

soybean

Dataset: Soybean

Description

An experiment was carried out to evaluate the grain yield (kg ha-1) of ten different commercial soybean cultivars in the municipality of Londrina/Parana. The experiment was carried out in the design of randomized complete blocks with four replicates per treatment.

Usage

```
data("soybean")
```

spider_graph 125

Format

```
data.frame containing data set

cult numeric vector with treatment

bloc numeric vector with block

prod Numeric vector with grain yield
```

See Also

cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

```
data(soybean)
```

spider_graph

Graph: Spider graph for sensorial analysis

Description

Spider chart or radar chart. Usually used for graphical representation of acceptability in sensory tests

Usage

```
spider_graph(
  resp,
  vari,
  blend,
  legend.title = "",
  xlab = "",
  ylab = "",
  ymin = 0
)
```

Arguments

resp	Vector containing notes
vari	Vector containing the variables
blend	Vector containing treatments
legend.title	Caption title
xlab	x axis title
ylab	y axis title
ymin	Minimum value of y

126 STRIPLOT

Value

Returns a spider or radar chart. This graph is commonly used in studies of sensory analysis.

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
radargraph, sk_graph, plot_TH, corgraph, barplot_positive, line_plot
```

Examples

```
library(AgroR)
data(sensorial)
with(sensorial, spider_graph(resp, variable, Blend))
```

STRIPLOT

Analysis: DBC experiments in strip-plot

Description

Analysis of an experiment conducted in a block randomized design in a strit-plot scheme using fixed effects analysis of variance.

Usage

```
STRIPLOT(
f1,
f2,
block,
response,
norm = "sw",
alpha.f = 0.05,
transf = 1,
textsize = 12,
labelsize = 4,
constant = 0
)
```

STRIPLOT 127

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with subplot levels

block Numeric or complex vector with blocks

response Numeric vector with responses

norm Error normality test (*default* is Shapiro-Wilk) alpha.f Level of significance of the F test (*default* is 0.05)

transf Applies data transformation (default is 1; for log consider 0)

textsize Font size (default is 12) labelsize Label size (default is 4)

constant Add a constant for transformation (enter value)

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett). The function also returns a standardized residual plot.

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

128 summarise_anova

summarise_anova	Utils: Summary of Analysis of Variance and Test of Means	
-----------------	--	--

Description

Summarizes the output of the analysis of variance and the multiple comparisons test for completely randomized (DIC), randomized block (DBC) and Latin square (DQL) designs.

Usage

```
summarise_anova(analysis, inf = "p", design = "DIC", round = 3, divisor = TRUE)
```

Arguments

analysis	List with the analysis outputs of the DIC, DBC, DQL, FAT2DIC, FAT2DBC, PSUBDIC and PSUBDBC functions
inf	Analysis of variance information (can be "p", "f", "QM" or "SQ")
design	Type of experimental project (DIC, DBC, DQL, FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC)
round	Number of decimal places
divisor	Add divider between columns

Note

Adding table divider can help to build tables in microsoft word. Copy console output, paste into MS Word, Insert, Table, Convert text to table, Separated text into:, Other: I.

The column names in the final output are imported from the ylab argument within each function.

This function is only for declared qualitative factors. In the case of a quantitative factor and the other qualitative in projects with two factors, this function will not work.

Triple factorials and split-split-plot do not work in this function.

Author(s)

Gabriel Danilo Shimizu

summarise_dunnett 129

```
a=DIC(trat, WL, geom = "point", ylab = "WL")
b=DIC(trat, SS, geom = "point", ylab="SS")
c=DIC(trat, AT, geom = "point", ylab = "AT")
summarise_anova(analysis = list(a,b,c), divisor = TRUE)
# DBC
data(soybean)
attach(soybean)
a=DBC(cult,bloc,prod,ylab = "Yield")
summarise_anova(list(a),design = "DBC")
# FAT2DIC
data(corn)
attach(corn)
a=FAT2DIC(A, B, Resp, quali=c(TRUE, TRUE))
summarise_anova(list(a),design="FAT2DIC")
```

summarise_dunnett

Utils: Dunnett's Test Summary

Description

Performs a summary in table form from a list of Dunnett's test outputs

Usage

```
summarise_dunnett(variable, colnames = NA, info = "sig")
```

Arguments

variable List object Dunnett test colnames Names of column info Information of table

Value

A summary table from Dunnett's test is returned

```
library(AgroR)
data("pomegranate")
a=with(pomegranate,dunnett(trat=trat,resp=WL,control="T1"))
b=with(pomegranate,dunnett(trat=trat,resp=SS,control="T1"))
c=with(pomegranate,dunnett(trat=trat,resp=AT,control="T1"))
```

130 tabledesc

```
d=with(pomegranate,dunnett(trat=trat,resp=ratio,control="T1"))
summarise_dunnett(list(a,b,c,d))
```

tabledesc

Descriptive: Table descritive analysis

Description

Function for generating a data.frame with averages or other descriptive measures grouped by a categorical variable

Usage

```
tabledesc(data, fun = mean)
```

Arguments

data.frame containing the first column with the categorical variable and the re-

maining response columns

fun Function of descriptive statistics (default is mean)

Value

Returns a data.frame with a measure of dispersion or position from a dataset and separated by a factor

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

```
data(pomegranate)
tabledesc(pomegranate)
```

TBARPLOT.reverse 131

TBARPLOT.reverse

Graph: Reverse graph of DICT, DBCT and DQL output when geom="bar"

Description

The function performs the construction of a reverse graph on the output of DICT, DBCT and DQL when geom="bar".

Usage

```
TBARPLOT.reverse(plot.t)
```

Arguments

DICT, DBCT or DQLT output when geom="bar" plot.t

Value

Returns a reverse graph of the output of DICT, DBCT or DQLT when geom="bar".

Note

All layout and subtitles are imported from DICT, DBCT and DQLT functions

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

See Also

```
DICT, DBCT, DQLT
```

```
data(simulate1)
a=with(simulate1, DICT(trat, tempo, resp,geom="bar",sup=40))
TBARPLOT.reverse(a)
```

test_two

test_two

Analysis: Test for two samples

Description

Test for two samples (paired and unpaired t test, paired and unpaired Wilcoxon test)

Usage

```
test_two(
  trat,
 resp,
 paired = FALSE,
 correct = TRUE,
  test = "t",
 alternative = c("two.sided", "less", "greater"),
 conf.level = 0.95,
  theme = theme_classic(),
 ylab = "Response",
 xlab = "",
 var.equal = FALSE,
 pointsize = 2,
 yposition.p = NA,
 xposition.p = NA,
 fill = "white"
)
```

Arguments

trat	Categorical vector with the two treatments
resp	Numeric vector with the response
paired	A logical indicating whether you want a paired t-test.
correct	A logical indicating whether to apply continuity correction in the normal approximation for the p-value.
test	Test used (t for test t or w for Wilcoxon test)
alternative	A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
conf.level	Confidence level of the interval.
theme	ggplot2 theme (default is theme_classic())
ylab	Variable response name (Accepts the expression() function)
xlab	Treatments name (Accepts the expression() function)
var.equal	A logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.

tomate 133

pointsize Point size
yposition.p Position p-value in y
xposition.p Position p-value in x

fill fill box

Details

Alternative = "greater" is the alternative that x has a larger mean than y. For the one-sample case: that the mean is positive.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing values are silently removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is generated.

Value

Returns the test for two samples (paired or unpaired t test, paired or unpaired Wilcoxon test)

Author(s)

```
Gabriel Danilo Shimizu, <shimizu@uel.br>
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
```

Examples

```
resp=rnorm(100,100,5)
trat=rep(c("A","B"),e=50)
test_two(trat,resp)
test_two(trat,resp,paired = TRUE)
```

tomate Dataset: Tomato data

Description

An experiment conducted in a randomized block design in a split plot scheme was developed in order to evaluate the efficiency of bacterial isolates in the development of tomato cultivars. The experiment counted a total of 24 trays; each block (in a total of four blocks), composed of 6 trays, in which each tray contained a treatment (6 isolates). Each tray was seeded with 4 different genotypes, each genotype occupying 28 cells per tray. The trays were randomized inside each block and the genotypes were randomized inside each tray.

134 transf

Usage

```
data(tomate)
```

Format

```
data.frame containing data set

parc Categorical vector with plot
subp Categorical vector with split-plot
bloco Categorical vector with block
resp Numeric vector
```

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, weather, aristolochia, phao, passiflora

Examples

```
data(tomate)
```

transf

Utils: Data transformation (Box-Cox, 1964)

Description

Estimates the lambda value for data transformation

Usage

```
transf(response, f1, f2 = NA, f3 = NA, block = NA, line = NA, column = NA)
```

Arguments

response	Numerical vector containing the response of the experiment.
f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
block	Numerical or complex vector with blocks
line	Numerical or complex vector with lines
column	Numerical or complex vector with columns

Value

Returns the value of lambda and/or data transformation approximation, according to Box-Cox (1964)

weather 135

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

References

Box, G. E., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.

Examples

```
# Completely randomized design
data("pomegranate")
with(pomegranate, transf(WL,f1=trat))
# Randomized block design
data(soybean)
with(soybean, transf(prod, f1=cult, block=bloc))
# Completely randomized design in double factorial
data(cloro)
with(cloro, transf(resp, f1=f1, f2=f2))
# Randomized block design in double factorial
data(cloro)
with(cloro, transf(resp, f1=f1, f2=f2, block=bloco))
```

weather Dataset: Weather data

Description

Climatic data from 01 November 2019 to 30 June 2020 in the municipality of Londrina-PR, Brazil. Data from the Instituto de Desenvolvimento Rural do Parana (IDR-PR)

Usage

data(weather)

weather weather

Format

data.frame containing data set

Data POSIXct vector with dates

tempo Numeric vector with time

Tmax Numeric vector with maximum temperature

Tmed Numeric vector with mean temperature

Tmin Numeric vector with minimum temperature

UR Numeric vector with relative humidity

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, aristolochia, phao, passiflora

Examples

data(weather)

Index

* Aditional	dispvar,42
FAT2DBC.ad, 56	DQL, 43
FAT2DIC.ad, 63	DQLT, 46
* Analysis	polynomial, 99
conjdbc, 16	polynomial2, 101
conjdic, 18	polynomial2_color, 103
* DBC	TBARPLOT.reverse, 131
conjdbc, 16	transf, 134
DBC, 24	* Factorial
FAT2DBC, 53	FAT2DBC, 53
FAT2DBC.ad, 56	FAT2DBC.ad, 56
PSUBDBC, 106	FAT2DIC, 60
PSUBDIC, 109	FAT2DIC.ad, 63
PSUBSUBDBC, 113	FAT3DBC, 67
STRIPLOT, 126	FAT3DBC.ad, 71
* DIC	FAT3DIC, 75
conjdic, 18	FAT3DIC.ad, 78
DIC, 34	* Joint
FAT2DIC, 60	conjdbc, 16
FAT2DIC.ad, 63	conjdic, 18
FAT3DBC, 67	* Regression
FAT3DBC.ad, 71	polynomial, 99
FAT3DIC, 75	* Transformation
FAT3DIC.ad, 78	transf, 134
* DQL	* croqui
DQL, 43	sketch, 121
* Descriptive	* datasets
desc, 31	aristolochia,5
desc2fat, 32	bean, 13
desc3fat, 33	cloro, 14
dispvar,42	corn, 21
* Experimental	covercrops, 23
DBC, 24	emerg, 51
DBCT, 29	enxofre, 52
desc, 31	laranja, 83
desc2fat, 32	mirtilo,87
desc3fat, 33	orchard, 87
DIC, 34	passiflora,88
DICT, 40	pepper, 90

138 INDEX

phao, 91	covercrops, 23
pomegranate, 105	
porco, 105	DBC, 24, 31, 37, 46
sensorial, 118	DBC.glm, 27
simulate1, 119	DBCT, 29, 42, 49, 131
simulate2, 119	desc, 31
simulate3, 120	desc2fat, <i>32</i> , 32
soybean, 124	desc3fat, 33
tomate, 133	DIC, 26, 34, 42, 46
weather, 135	DIC.glm, 38
* dbct	DICT, 31, 40, 49, 131
DBCT, 29	dispvar, <i>32</i> , 42
* descriptive	DQL, 26, 37, 43, 49
tabledesc, 130	DQLT, 31, 42, 46, 131
* dict	dunn, 49
DICT, 40	dunnett, 50, 60, 67
* dqlt	
DQLT, 46	emerg, 51
* experimental	enxofre, 5, 14, 15, 22, 23, 52, 52, 83, 87, 88,
sketch, 121	91, 105, 106, 118–120, 125, 134, 136
* regression	
polynomial2, 101	FAT2DBC, 53, 60
polynomial2_color, 103	FAT2DBC.ad, 56, 56
	FAT2DIC, 60, 67
* split-plot	FAT2DIC.ad, 63, 63
PSUBDBC, 106	FAT3DBC, 67
agen 4	FAT3DBC.ad, 71
aacp, 4	FAT3DIC, 75
aristolochia, 5, 14, 15, 22, 23, 52, 83, 88,	FAT3DIC.ad, 78
91, 106, 118–120, 134, 136	
har dunnatt 10	ibarplot.double,82
bar_dunnett, 10	
bar_graph, 11	laranja, 5, 14, 15, 22, 23, 52, 83, 87, 88, 91,
bar_graph2, 12	105, 106, 118–120, 125, 134, 136
barfacet, 6	line_plot, 10, 12, 13, 84, 97, 99, 115-117,
bargraph_onefactor, 7	124, 126
bargraph_twofactor, 8	logistic, 85
barplot_positive, 9, 12, 13, 97, 99,	
115–117, 124, 126	mirtilo, 5, 14, 15, 22, 23, 52, 83, 87, 88, 91,
bean, 13	105, 106, 118–120, 125, 134, 136
cloro, 5, 14, 14, 52, 83, 87, 88, 91, 105, 106,	anahand 97
118–120, 125, 134, 136	orchard, 87
confinterval, 15	passiflora, 5, 14, 15, 22, 23, 52, 83, 88, 88,
conjdbc, 16	91, 105, 106, 118–120, 125, 134, 136
conjdic, 18	
•	PCA_function, 89
cor_ic, 22	pepper, 90
corgraph, 10, 12, 13, 20, 84, 97, 99, 115–117,	phao, 5, 14, 15, 22, 23, 52, 83, 88, 91, 91, 105,
124, 126	106, 118–120, 125, 134, 136
corn, 21	plot_cor, 12, 13, 92

INDEX 139

```
plot_interaction, 12, 13, 93
plot_jitter, 12, 13, 94
plot_TH, 10, 12, 13, 84, 95, 115-117, 124, 126
plot_TH1, 12, 13, 97, 97
polynomial, 99, 102, 104
polynomial2, 100, 101, 104
polynomial2_color, 100, 102, 103
pomegranate, 5, 14, 15, 22, 23, 52, 83, 87, 88,
         91, 105, 106, 118–120, 125, 134, 136
porco, 5, 14, 15, 22, 23, 52, 83, 87, 88, 91,
         105, 105, 118–120, 125, 134, 136
PSUBDBC, 106
PSUBDIC, 109
PSUBFAT2DBC, 112
PSUBSUBDBC, 113
radargraph, 10, 12, 13, 84, 97, 99, 115, 116,
         117, 124, 126
seg_graph, 12, 13, 116
seg_graph2, 117
sensorial, 15, 22, 23, 52, 83, 87, 88, 91, 105,
         106, 118, 119, 120, 134, 136
simulate1, 5, 14, 15, 22, 23, 52, 83, 87, 88,
         91, 105, 106, 118, 119, 120, 125,
         134, 136
simulate2, 5, 14, 15, 22, 23, 52, 83, 87, 88,
         91, 105, 106, 118, 119, 119, 120,
         125, 134, 136
simulate3, 5, 14, 15, 22, 23, 52, 83, 87, 88,
         91, 105, 106, 118–120, 120, 125,
         134, 136
sk_graph, 10, 84, 97, 99, 115, 123, 126
sketch, 4, 121
soybean, 124
spider_graph, 10, 12, 13, 84, 97, 99,
         115–117, 124, 125
STRIPLOT, 126
summarise_anova, 128
summarise_dunnett, 129
tabledesc, 32, 130
TBARPLOT. reverse, 12, 13, 131
test_two, 132
tomate, 5, 14, 15, 22, 23, 52, 83, 87, 88, 91,
         105, 106, 118–120, 125, 133, 136
transf, 4, 134
weather, 5, 14, 15, 22, 23, 52, 83, 87, 88, 91,
         105, 106, 118–120, 125, 134, 135
```