Last updated on 2024-10-11 15:50:32 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.9.1 | 12.22 | 97.57 | 109.79 | NOTE | |
r-devel-linux-x86_64-debian-gcc | 1.9.1 | 8.56 | 70.12 | 78.68 | NOTE | |
r-devel-linux-x86_64-fedora-clang | 1.9.1 | 172.64 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.9.1 | 163.75 | NOTE | |||
r-devel-windows-x86_64 | 1.9.1 | 13.00 | 113.00 | 126.00 | NOTE | |
r-patched-linux-x86_64 | 1.9.1 | 10.33 | 93.60 | 103.93 | NOTE | |
r-release-linux-x86_64 | 1.9.1 | 10.85 | 91.76 | 102.61 | NOTE | |
r-release-macos-arm64 | 1.9.1 | 49.00 | NOTE | |||
r-release-macos-x86_64 | 1.9.1 | 80.00 | NOTE | |||
r-release-windows-x86_64 | 1.9.1 | 13.00 | 112.00 | 125.00 | NOTE | |
r-oldrel-macos-arm64 | 1.9.1 | 51.00 | OK | |||
r-oldrel-macos-x86_64 | 1.9.1 | 126.00 | OK | |||
r-oldrel-windows-x86_64 | 1.9.1 | 14.00 | 139.00 | 153.00 | OK |
Version: 1.9.1
Check: Rd files
Result: NOTE
checkRd: (-1) ivmodel.Rd:37: Lost braces
37 | and produces statistics for \eqn{\beta}. In particular, \code{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of \eqn{\beta} using \code{KClass}, \code{LIML}, and code{Fuller}. Also, \code{ivmodel} computes confidence intervals and hypothesis tests of the type \eqn{H_0: \beta = \beta_0} versus \eqn{H_0: \beta \neq \beta_0} for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if \eqn{Z} is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).
| ^
checkRd: (-1) ivmodelFormula.Rd:42: Lost braces
42 | and produces statistics for \eqn{\beta}. In particular, \code{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of \eqn{\beta} using \code{KClass}, \code{LIML}, and code{Fuller}. Also, \code{ivmodel} computes confidence intervals and hypothesis tests of the type \eqn{H_0: \beta = \beta_0} versus \eqn{H_0: \beta \neq \beta_0} for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if \eqn{Z} is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).
| ^
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64