clustvarsel: Variable Selection for Gaussian Model-Based Clustering

Variable selection for Gaussian model-based clustering as implemented in the 'mclust' package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting 'mclust' models. By default the algorithm uses a sequential search, but parallelisation is also available.

Version: 2.3.1
Depends: R (≥ 3.2), mclust (≥ 5.3), BMA (≥ 3.18), foreach, iterators
Imports: stats, Matrix
Suggests: MASS, parallel, doParallel, knitr (≥ 1.12), rmarkdown (≥ 0.9)
Published: 2017-07-07
Author: Nema Dean [aut], Adrian E. Raftery [aut], Luca Scrucca [aut, cre]
Maintainer: Luca Scrucca <luca.scrucca at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: clustvarsel citation info
Materials: NEWS
In views: ChemPhys, Cluster, Multivariate
CRAN checks: clustvarsel results


Reference manual: clustvarsel.pdf
Vignettes: A quick tour of clustvarsel
Package source: clustvarsel_2.3.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: clustvarsel_2.3.1.tgz
OS X Mavericks binaries: r-oldrel: clustvarsel_2.3.1.tgz
Old sources: clustvarsel archive


Please use the canonical form to link to this page.